Refine Your Search

Topic

Author

Search Results

Journal Article

Applying Virtual Statistical Modeling for Vehicle Dynamics

2010-04-12
2010-01-0019
Dimensional variation simulation is a computer aided engineering (CAE) method that analyzes the statistical efforts of the component variation to the quality of the final assembly. The traditional tolerance analysis method and commercial CAE software are often based on the assumptions of the rigid part assembly. However, the vehicle functional attributes, such as, ride and handling, NVH, durability and reliability, require understanding the assembly quality under various dynamic conditions while achieving vehicle dimensional clearance targets. This paper presents the methods in evaluating and analyzing the impacts of the assembly variations for the vehicle dynamic performance. Basic linear tolerance stack method and advanced study that applies various CAE tools for the virtual quality analysis in the product and process design will be discussed.
Journal Article

CAE Applications and Techniques used in Calculating the Snaps Insertions and Retentions Efforts in Automotive Trims

2014-04-01
2014-01-1032
A snap-fit is a form-fitting joint, which is used to assemble plastic parts together. Snap-fits are available in different forms like a projecting clip, thicker section or legs in one part, and it is assembled to another part through holes, undercuts or recesses. The main function of the snap-fit is to hold the mating components, and it should withstand the vibration and durability loads. Snap-fits are easy to assemble, and should not fail during the assembling process. Based on the design, these joints may be separable or non-separable. The non- separable joints will withstand the loads till failure, while separable joints will withstand only for the design load. The insertion and the retention force calculation for the snaps are very essential for snap-fit design. The finite element analysis plays a very important role in finding the insertion and the retention force values, and also to predict the failure of the snaps and the mating components during this process.
Journal Article

External Biofidelity Evaluation of Pedestrian Leg-Form Impactors

2017-03-28
2017-01-1450
Current state-of-the-art vehicles implement pedestrian protection features that rely on pedestrian detection sensors and algorithms to trigger when impacting a pedestrian. During the development phase, the vehicle must “learn” to discriminate pedestrians from the rest of potential impacting objects. Part of the training data used in this process is often obtained in physical tests utilizing legform impactors whose external biofidelity is still to be evaluated. This study uses THUMS as a reference to assess the external biofidelity of the most commonly used impactors (Flex-PLI, PDI-1 and PDI-2). This biofidelity assessment was performed by finite element simulation measuring the bumper beam forces exerted by each surrogate on a sedan and a SUV. The bumper beam was divided in 50 mm sections to capture the force distribution in both vehicles. This study, unlike most of the pedestrian-related literature, examines different impact locations and velocities.
Journal Article

The Effects of Detailed Tire Geometry on Automobile Aerodynamics - a CFD Correlation Study in Static Conditions

2009-04-20
2009-01-0777
A correlation study was performed between static wind tunnel testing and computational fluid dynamics (CFD) for a small hatchback vehicle, with the intent of evaluating a variety of different wheel and tire designs for aerodynamic forces. This was the first step of a broader study to develop a tool for assessing wheel and tire designs with real world (rolling road) conditions. It was discovered that better correlation could be achieved when actual tire scan data was used versus traditional smooth (CAD) tire geometry. This paper details the process involved in achieving the best correlation of the CFD prediction with experimental results, and describes the steps taken to include the most accurate geometry possible, including photogrammetry scans of an actual tire that was tested, and the level of meshing detail utilized to capture the fluid effects of the tire detail.
Journal Article

Steady and Transient CFD Approach for Port Optimization

2008-04-14
2008-01-1430
The intake and exhaust port design plays a substantial role in performance of combustion systems. The port design determines the volumetric efficiency and in-cylinder charge motion of the spark-ignited engine which influences the thermodynamic properties directly related to the power output, emissions, fuel consumption and NVH properties. Thus intake port has to be appropriately designed to fulfill the required charge motion and high flow performance. While turbulence intensity and air-mixture quality affect dilution tolerance and fuel economy as a result, breathing ability affects wide open throttle performance. Traditional approaches require experimental techniques to reach a target balance between the charge motion and breathing capacity. Such techniques do not necessarily result in an optimized solution.
Journal Article

Thermal Modeling of Power Steering System Performance

2008-04-14
2008-01-1432
Power steering systems provide significant design challenges. They are detrimental to fuel economy since most require the continuous operation of a hydraulic pump. This generates heat that must be dissipated by fluid lines and heat exchangers. This paper presents a simple one-dimensional transient model for power steering components. The model accounts for the pump power, heat dissipation from fluid lines, the power steering cooler, and the influence of radiation heat from exhaust system components. The paper also shows how to use a transient thermal model of the entire system to simulate the temperatures during cyclic operation of the system. The implications to design, drive cycle simulation, and selection of components are highlighted.
Journal Article

Effect of Operational Testing and Trim Manufacturing Process Variation on Head Injury Criterion in FMVSS 201 Tests

2008-04-14
2008-01-1218
This paper analyzes the difference in impact response of the forehead of the Hybrid III and THOR-NT dummies in free motion headform tests when a dummy strikes the interior trim of a vehicle. Hybrid III dummy head is currently used in FMVSS201 tests. THOR-NT dummy head has been in development to replace Hybrid III head. The impact response of the forehead of both the Hybrid III dummy and THOR dummy was designed to the same human surrogate data. Therefore, when the forehead of either dummy is impacted with the same initial conditions, the acceleration response and consequently the head Injury criterion (HIC) should be similar. A number of manufacturing variables can affect the impacted interior trim panels. This work evaluates the effect of process variation on the response in the form of Head Injury Criterion (HIC).
Journal Article

A Springback Compensation Study on Chrysler 300C Stamping Panels Using LS-DYNA®

2008-04-14
2008-01-1443
Springback compensation studies on a few selected auto panels from the hot selling Chrysler 300C are presented with details. LS-DYNA® is used to predict the springback behavior and to perform the iterative compensation optimization. Details of simulation parameters using LS-DYNA® to improve the prediction accuracy are discussed. An iterative compensation algorithm is also discussed with details. Four compensation examples with simulation predictions and actual panel measurement results are included to demonstrate the effectiveness of LS-DYNA® predictions. An aluminum hood inner and a high strength steel roof bow are compensated, constructed and machined based on simulation predictions. The measurements on actual tryout panels are then compared with simulation predictions and good correlations were achieved. Iterative compensation studies are also done on the aluminum hood inner and the aluminum deck lid inner to demonstrate the effectiveness of LS-DYNA® compensation algorithm.
Journal Article

Parametric Shape Optimization

2008-04-14
2008-01-1431
External aerodynamic simulations are becoming more important because of regulatory pressures on fuel economy improvements and shorter design cycles. Experimental work is typically done on scaled models to get drag and cooling flow information. This is a time consuming process. Numerical simulations might provide a complementary path to get the answers in a timely manner. This paper discusses one such approach.
Journal Article

Computer Simulation of Automotive Air Conditioning - Components, System, and Vehicle: Part 2

2008-04-14
2008-01-1433
In 1972, the first SAE paper describing the use of computer simulation as a design tool for automotive air conditioning was written by these authors. Since then, many such simulations have been used and new tools such as CFD have been applied to this problem. This paper reviews the work over that past 35 years and presents several of the improvements in the basic component and system models that have occurred. The areas where “empirical” information is required for model support and the value of CFD cabin and external air flow modeling are also discussed.
Journal Article

Effects of Roller Diameter and Number on Fatigue Lives of Cam Roller Follower Bearings

2011-04-12
2011-01-0489
Effects of roller diameter and number on the contact pressures, subsurface stresses and the fatigue lives of cam roller follower bearings are investigated in this paper. Finite element analyses under plane strain conditions were conducted to identify the effects of the diameter and number of the rolling elements and the thickness of the outer ring. The fatigue life of the inner pin generally increases as the roller diameter increases. But, reducing the number of rollers to accommodate larger rollers does not necessarily increase the fatigue life. The inevitable decrease of the thickness of the outer ring due to the increase of the roller diameter results in the increase of compliance for the outer ring. This increase of compliance leads to excessive deformation of the outer ring and consequently more load must be carried by fewer number of rolling elements.
Technical Paper

Wheel Joint Analytical System Approach to Evaluate Brake Rotor Mounted LRO Sensitivity Effects

2007-10-07
2007-01-3947
Many different studies have been performed to understand brake roughness, and in particular how brake rotor Disc Thickness Variation (DTV) is generated. The intent of this paper is to analytically explore through non- linear finite element modeling methods the effects of wheel joint variables on brake rotor mounted Lateral RunOut (LRO). The phenomenon of LRO is believed to be a primary contributor to DTV generation and resulting brake roughness. CAE analyses were conducted in non-linear contact mechanics in which real contacts between components exist. Various joint designs were simulated to compare rotor LRO and coning. Several parameters inherent to the design of wheel joints were varied and studied. A comparative approach was used to develop specific design recommendations for LRO reductions.
Technical Paper

Viscous Fan Drive Model for Robust Cooling Air Flow Simulation

2007-04-16
2007-01-0595
One Dimensional models for front end air flows through the cooling system package are very useful for evaluating the effects of component and front end geometry changes. To solve such models for the air flow requires a robust iterative process that involves a number of non-linear sub-models. The cooling fan (s) constitute a major part of the difficulty, especially when they employ a viscous or “thermal” fan drive. This drive varies the torque coupling between the input and output shafts based on the radiator outlet air temperature. The coupling is achieved by viscous shear between two grooved disks and is regulated by a bimetal strip valve that varies the amount of fluid between the disks. This paper presents a mathematical model by which the input/output speed ratio may be determined as a function of the air temperature and input speed. Coefficients in the model are estimated from standard supplier performance information.
Technical Paper

Robust Compressor Model for AC System Simulation

2007-04-16
2007-01-0596
Simple component models are advantageous when simulating vehicle AC systems so that overall model complexity and computation time can be minimized. These models must be robust enough to avoid instability in the iteration method used for determining the AC system operating or “balance” point. Simplicity and stability are especially important when the AC system model is coupled with a vehicle interior model for studies of transient performance because these are more computationally intensive. This paper presents a semi-empirical modeling method for compressors based on dimensionless parameters. Application to some sample compressor data is illustrated. The model equations are simple to employ and will not introduce significant stability problems when used as part of a system simulation.
Technical Paper

Method to Efficiently Implement Automotive Application Algorithms Using Signal Processing Engine (SPE) of Copperhead Microcontroller

2008-04-14
2008-01-1222
This paper presents the studies on how to efficiently and easily implement ECU application algorithms using the Signal Processing Engine (SPE) of the Copperhead microcontroller. With the introduced development and testing concepts and methods, users can easily establish their own PC based SPE emulation system. All application unit testing and verification work for the fixed point implementation using SPE functions can be easily conducted in PC without relying on a costly real time test bench and expensive third party dedicated software. With this simple development environment, the code can be run in both embedded controllers and PCs with exact bit to bit numerical behavior. The paper also demonstrates many other benefits such as code statistics information retrieval, floating simulation mode, automated code verification, online and offline code sharing.
Technical Paper

Active Bolster for Side Impact Protection

2008-04-14
2008-01-0191
This paper discusses the simulation based methodology for designing and developing a deployable vehicle door interior trim, an Active Side Bolster (ASB), and its interaction (in FEA simulation) with an ATD in side impact crash test modes like FMVSS2141 Oblique Pole, IIHS2 and LINCAP. The FEA models, especially with the complexity of the full vehicle structure, the ATDs3 and the airbags, require extensive correlation using vehicle tests. A methodology is outlined here to ensure that the model results could be used to generate FEA ATD assessments without a significant numerical contamination of the results. These correlated FEA models for side impact vehicle tests and ATDs were used to simulate various side impact crash test conditions; such as IIHS barrier, the FMVSS-214 Oblique Pole and LINCAP. The ATD responses from the baseline vehicle FEA models and those modified with the addition of an ASB in the door shows improvement in assessment values due to the introduction of the ASB.
Technical Paper

Friction Stir Welding of Aluminum for Automotive Closure Panel Applications

2008-04-14
2008-01-0145
Friction stir welding (FSW) shows advantages for joining lightweight alloys for automotive applications. In this research, the feasibility of friction stir welding aluminum for an automotive component application was studied. The objective of this research was to improve the Friction Stir Spot Welding (FSSW) technique used to weld an aluminum closure panel (CP). The spot welds were made using the newly designed swing-FSSW technique. In a previous study (unpublished), the panel was welded from the thin to thick side using both an 8 mm and a 10 mm diameter tool. The 10 mm tool passed various fatigue tests; however, the target was to improve performance of the 8 mm tool, especially to increase the number of cycle before the first crack appearance during fatigue testing. In this study fatigue tests and static strength was recorded for weld specimens that were welded from thick-to-thin with an 8 mm diameter tool.
Technical Paper

Transient One-Dimensional Thermal Analysis of Automotive Components for Determination of Thermal Protection Requirements

2008-04-14
2008-01-0733
During initial phases of vehicle development process, it is usually required to understand the temperature profile for all components. It is usually more effective and less costly if the thermal issues are determined and addressed before actual vehicles are built. Computational Fluid Dynamics (CFD) analysis tools are typically used for thermal management of the vehicle environment. However, for transient thermal analysis problems, running a full CFD requires solving the mass, momentum, and energy equations. This typically requires a lengthy computation time and extensive computer resources. The problem becomes more challenging when trying to conduct CFD analysis for several design iterations and for different duty cycles that may be of a transient nature. Therefore, the application of one-dimensional analysis early in the development phase can help point out the areas of prime concern.
Technical Paper

A Case Study in Structural Optimization of an Automotive Body-In-White Design

2008-04-14
2008-01-0880
A process for simultaneously optimizing the mechanical performance and minimizing the weight of an automotive body-in-white will be developed herein. The process begins with appropriate load path definition though calculation of an optimized topology. Load paths are then converted to sheet metal, and initial critical cross sections are sized and shaped based on packaging, engineering judgment, and stress and stiffness approximations. As a general direction of design, section requirements are based on an overall vehicle “design for stiffness first” philosophy. Design for impact and durability requirements, which generally call for strength rather than stiffness, are then addressed by judicious application of the most recently developed automotive grade advanced high strength steels. Sheet metal gages, including tailored blanks design, are selected via experience and topometry optimization studies.
Technical Paper

Lessons Learned for Effective Design Verification

2009-04-20
2009-01-0559
The ultimate goal of reliability engineering is to prevent design failure modes in the field. Effective design verification can be a powerful tool toward achieving this goal. Reducing development time, minimizing cost, and improving quality are further challenges which drive effective design verification. This paper explains the key steps required to develop an effective design verification plan and report (DVP&R). In addition, lessons learned will be discussed using specific examples of undesirable practices. Design for Six Sigma (DFSS) verification phase requirements are also examined.
X