Refine Your Search

Topic

Author

Search Results

Video

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

2011-11-01
A new index for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U* , which expresses the connection strength between a load point and an arbitrary point within the structure enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Presenter Tadashi Naito, Honda R&D Co., Ltd.
Journal Article

Development of the Next-generation Steering System (Development of the Twin Lever Steering System)

2010-04-12
2010-01-0993
With the objective of establishing the ultimate steering operation system for drivers, we developed, based on bioengineering considerations, the Twin Lever Steering (TLS) system which mimicks the bi-articular muscles, as shown in Fig. 1 . The bioengineering advantages are as follows: (1) force can be exerted more easily, (2) the steering can be accomplished quickly, (3) the positioning can be done accurately, and (4) the burden on the driver can be reduced (less fatigue). The advantages of the vehicle in terms of its motion are as follows: (1) the line-traceability is improved, (2) the drift control is improved, (3) the lane-change capability is improved, and (4) the lap time and stability are improved. We would like to report on these advantages of the TLS system from a bioengineering standpoint, and also describe the results of some verification test results obtained from vehicles equipped with this new steering system.
Journal Article

Durability Design Method of New Stopper Bush Using New Theory (Friction and Spring) for Electric Power Steering

2014-04-01
2014-01-0046
In the automobile industries, weight reduction has been investigated to improve fuel efficiency together with reduction of CO2 emission. In such circumstance, it becomes necessity to make an electric power steering (EPS) more compact and lightweight. In this study, we aimed to have a smaller and lighter EPS gear size by focusing on an impact load caused at steering end. In order to increase the shock absorption energy without increase of stopper bush size, we propose new theory of impact energy absorption by not only spring function but also friction, and a new stopper bush was designed on the basis of the theory. The profile of the new stopper bush is cylinder form with wedge-shaped grooves, and when the new stopper bush is compressed by the end of rack and the gear housing at steering end, it enables to expand the external diameter and produce friction. In this study, we considered the durability in the proposed profile.
Journal Article

Consideration about Meshing of Worm Gear Based on MUB (Meshing Under Base-Circle) Theory for EPS

2014-04-01
2014-01-0058
This paper will discuss the stress reduction of the worm wheel for an electric power steering (EPS) system. The research discussed in this paper focused on the worm wheel, the EPS component that determines the maximum diameter of the system. If the stress of the worm wheel could be reduced without increasing in size, it would be possible to reduce the size of the worm wheel and EPS system. In order to reduce the stress of the worm wheel, the conventional design method has extended the line-of-action toward outside of the worm wheel to increase the contact ratio of the gears and these method lead to an increase in the outer diameter. In order to address this issue, past research proposes the basic concept to extend line-of-action toward the inside of the worm wheel. And this new meshing theory was named MUB (Meshing Under Base-circle) theory. In this paper, characteristics of meshing of the gear formed by MUB theory are determined in more detail.
Journal Article

Development of γ′-Fe4N Phase Control Technology and Low-Carbon Alloy Steel for High-Strength Nitrided Gear

2015-04-14
2015-01-0519
A new nitriding technology and material technology have been developed to increase the strength of microalloyed gears. The developed nitriding technology makes it possible to freely select the phase composition of the nitride compound layer by controlling the treatment atmosphere. The treatment environment is controlled to exclude sources of supply of [C], and H2 is applied as the carrier gas. This has made it possible to control the forward reaction that decomposes NH3, helping to enable the stable precipitation of γ′-phase, which offers excellent peeling resistance. A material optimized for the new nitriding technology was also developed. The new material is a low-carbon alloy steel that makes it possible to minimize the difference in hardness between the compound layer and the substrate directly below it, and is resistant to decline in internal hardness due to aging precipitation in the temperature range used in the nitriding treatment.
Journal Article

Development of Feedback-Based Active Road Noise Control Technology for Noise in Multiple Narrow-Frequency Bands and Integration with Booming Noise Active Noise Control System

2015-04-14
2015-01-0660
When a vehicle is in motion, noise is generated in the cabin that is composed of noise in multiple narrow-frequency bands and caused by input from the road surface. This type of noise is termed low-frequency-band road noise, and its reduction is sought in order to increase occupant comfort. The research discussed in this paper used feedback control technology as the basis for the development of an active noise control technology able to simultaneously reduce noise in multiple narrow-frequency bands. Methods of connecting multiple single-frequency adaptive notch filters, a type of adaptive filter, were investigated. Based on the results, a method of connecting multiple filters that would mitigate mutual interference caused by different controller transmission characteristics was proposed.
Journal Article

Research on Mechanism of Change in Suspension Transfer Force in Relation to Low-Frequency Road Noise

2015-04-14
2015-01-0667
Cabin quietness is one of the important factors for product marketability. In particular, the importance of reducing road noise is increasing in recent years. Methods that reduce acoustic sensitivity as well as those that reduce the force transferred from the suspension to the body (the suspension transfer force) are used as means of reducing road noise. Reduction of the compliance of the body suspension mounting points has been widely used as a method of reducing acoustic sensitivity. However, there were cases where even though this method reduced acoustic sensitivity, road noise did not decrease. This mechanism remained unclear. This study focused on the suspension transfer force and analyzed this mechanism of change using the transfer function synthesis method. The results showed that the balance between the body's suspension mounting points, suspension bush, and suspension arm-tip compliance is an important factor influencing the change in suspension transfer force.
Journal Article

Development of State of the Art Compact and Lightweight Thermoelectric Generator Using Vacuum Space Structure

2015-04-14
2015-01-1691
Exhaust heat recovery units that use a thermoelectric element generate electricity by creating a temperature difference in the thermoelectric element by heating one side and cooling the other side of the thermoelectric circuit (module). In this case, the general structure does not directly join the thermoelectric module with the heat sink, and instead presses the thermoelectric module against the heat sink using bolts or other means in order to prevent thermoelectric element damage due to the difference in linear expansion between the cooled and heated sides of the thermoelectric module. However, this poses the issues associated with a complex, heavy and expensive structure. Therefore, a new vacuum space structure was devised that houses the thermoelectric module in a vacuum chamber and presses the module against the heat sink using atmospheric pressure.
Journal Article

Incoming Wave Estimation Characteristics by MUSIC Method Using a Virtual Array Antenna in Urban Reception Conditions

2016-04-05
2016-01-0077
We developed “Two-Stage Method” that makes it possible to evaluate the automotive suitability of FM receivers by generating a virtual radio wave environment on a PC. The major technological challenge for the Two-Stage Method was reproducing an actual radio wave environment on PC. It was necessary to estimate the characteristics of the FM radio wave environment in tests using the Multiple Signal Classification (MUSIC) method. However, when the MUSIC method is applied to FM reception, restrictions in factors including the number of array antenna elements and the occupied bandwidth result in issues of separation performance in relation to multipath waves in urban environments. We therefore developed a MUSIC Method using a virtual array antenna, making it possible to create combinations of numbers of array and sub-array elements as desired, thus boosting multipath wave separation performance. This development was reported at the 2015 SAE World Congress.
Journal Article

Development and Application of FM Multipath Distortion Rate Measurement System Using a Fading Emulator Based on Two-Stage Method

2016-04-05
2016-01-0082
The suitability of FM radio receivers for automobiles has conventionally been rated by evaluating reception characteristics for broadcast waves in repeated driving tests in specific test environments. The evaluation of sound quality has relied on the auditory judgment due to difficulties to conduct quantitative evaluations by experiments. Thus the method had issues in terms of the reproducibility and objectivity of the evaluations. To address these issues, a two-stage method generating a virtual radio wave environment on a PC was developed. The research further defined the multipath distortion rate, MDr, as an index for the sound quality evaluation of FM receivers, and the findings concerning the suitability of the evaluation of FM terminals for automobiles were reported at the 2015 SAE World Congress.
Journal Article

Thermal Modeling of Power Steering System Performance

2008-04-14
2008-01-1432
Power steering systems provide significant design challenges. They are detrimental to fuel economy since most require the continuous operation of a hydraulic pump. This generates heat that must be dissipated by fluid lines and heat exchangers. This paper presents a simple one-dimensional transient model for power steering components. The model accounts for the pump power, heat dissipation from fluid lines, the power steering cooler, and the influence of radiation heat from exhaust system components. The paper also shows how to use a transient thermal model of the entire system to simulate the temperatures during cyclic operation of the system. The implications to design, drive cycle simulation, and selection of components are highlighted.
Journal Article

Development of the Next-Generation Steering System (Development of the Twin Lever Steering for Production Vehicle)

2011-04-12
2011-01-0557
Looking back on steering systems in more than a hundred years that have passed since the introduction of the automobile, it can be seen that original method of controlling cars pulled by animals such as horses was by reins, and early automobiles had a single push-pull bar (tiller steering). That became the steering wheel, and an indirect steering mechanism by rotating up and down caught on. While the steering wheel is the main type of steering system in use today, the team have developed the Twin Lever Steering (TLS) system controlled mainly by bi-articular muscles, making use of advancements in science and technology and bioengineering to develop based on bioengineering considerations as shown in Fig. 1. The objective of that is to establish the ultimate steering operation system for drivers. In the first report, the authors reported on results found by using race-car prototypes as shown in Fig. 2.
Journal Article

Development of Compact Transverse Flux Motor with 2 Coils and 3 Stators

2012-04-16
2012-01-0344
Honda has been conducting research to create a T.F. (Transverse Flux) motor with a new three-dimensional magnetic circuit in order to produce more versatile motors for HEVs. The effectiveness of magnetic circuits has been proven in principle, but there is also a clear need to improve the torque characteristics. To improve torque characteristics, the magnetic saturation needs to be reduced by creating a more even flux path area and widening the gap between the teeth. Torque characteristics were improved by designing a new stator with sufficient flux path area and distance between teeth. The new T.F. motor also has a simple structure, consisting of two winding wires and three stators. This has improved torque density.
Technical Paper

Development of Electrostatic Capacity Type Steering Sensor Using Conductive Leather

2020-04-14
2020-01-1209
Today’s progress in electronic technologies is advancing the process of making vehicles more intelligent, and this is making driving safer and more comfortable. In recent years, numerous vehicles equipped with high-level Advance Driving Assist System (ADAS) have been put on the market. High-level ADAS can detect impending lane deviation, and control the vehicle so that the driver does not deviate from the lane. Lane departure prevention systems are able to detect imminent departure from the road, allowing the driver to apply control to prevent lane departure. These systems possess enormous potential to reduce the number of accidents resulting from road departure, but their effectiveness is highly reliant on their level of acceptance by drivers.
Technical Paper

The Validity of EPS Control System Development using HILS

2010-04-12
2010-01-0008
In recent years, the increased use of electric power steering in vehicles has increased the importance of issues such as making systems more compact and lightweight, and dealing with increased development man-hours. To increase development efficiency, the use of a “Hardware in the loop simulator” (HILS) is being tested to shift from the previous development method that relied on a driver's subjective evaluation in an actual vehicle test to bench-test development. Using HILS enables tasks such as specification studies, performance forecasts, issue identification and countermeasure proposals to be performed at an early stage of development even when there is no prototype vehicle. This report describes a case study of using HILS to solve the issues of reducing the load by adjusting the geometric specifications around the kingpin and eliminating the tradeoff by adding a new EPS control algorithm in order to make the electric power steering (EPS) more compact and lightweight.
Technical Paper

Toward Requirements for a Web-based Icing Training Program for Flight Dispatchers

2003-06-16
2003-01-2151
The Icing Branch at NASA Glenn Research Center has funded an exploratory effort to identify requirements for developing a flight dispatcher-centered web-based icing training program that would be available for all airspace users. Through research and discussions with personnel at airlines, target areas were identified as influences on the requirements for the training system: 1 Flight dispatchers' icing related judgments and decision-making; 2 Certification, new hire and recurrent flight dispatcher training with respect to icing; 3 Icing related weather sources and the problems that flight dispatchers may have in their interpretation; 4 Pedagogical strategies (such as flight dispatcher-centered scenario-based approaches) for delivering flight dispatcher training content; and 5 Concerns/constraints with respect to web-based training for flight dispatchers.
Technical Paper

Interconnection Technology for Engine Generators

2003-09-15
2003-32-0053
The development of the 1 kW-class inverter unit with a small engine generator that conforms to “Guideline for the interconnection technology requirements” has succeeded. To connect distributed electrical sources such as wind power generation, photovoltaic generation, or cogeneration to the utility grid, it is necessary to detect demand-side problems including the distributed sources (short circuit, ground fault, troubles in generated voltage or frequency) and to detect problems in the grid (power failure and troubles of voltage or frequency). It is also necessary to protect electric power systems, distributed sources, and electrical appliances. The inverter unit uses both passive and active islanding detection methods. Total distortion factor is reduced to less than 1% by applying two kinds of input current to the power supply unit. Efficiency of the interconnection inverter unit has achieved 91% and total efficiency of power generation of the cogeneration unit has achieved 20%.
Technical Paper

Control Device of Electronically Controlled Fuel Injection System of Air-cooled Engines for Small Motorcycles

2004-03-08
2004-01-0901
In conventional electronically controlled fuel injection systems, when the battery is inadequately charged, the small amount of electric power generated from the alternator by the kick starter operation is consumed by all electrical loads including the battery. This causes a voltage drop, hence the fuel injection system does not function due to a power shortage. To eliminate the power shortage, an installed relay circuit opens all electric loads other than the fuel injection system. This allows the fuel injection system to use all the electric power generated by the kick starter operation aided through using an additionally incorporated condenser. This type of electric power control system has been incorporated into the ECU. Thus, the control system has been realized that permits starting of an engine by using the kick-starter even when the battery is completely discharged.
Technical Paper

Electric Power Control System for a Fuel Cell Vehicle Employing Electric Double-Layer Capacitor

2004-03-08
2004-01-1006
A fuel-cell-vehicle has been provided with an electric-double-layer-capacitor system (capacitor) to act as a back-up power source. The fuel cells and the capacitor have different voltages when the system is started, and for this reason the system could not be reconnected by relays. A VCU (Voltage and current Control Unit) has been positioned in the path of electrical connection between the fuel cells and the capacitor as a method of dealing with this issue. The VCU enables the charging of the capacitor to be controlled in order to equalize the voltage of the two power sources and allow a connection.
X