Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Madymo Model of the Foot and Leg for Local Impacts

1999-10-10
99SC12
It has been reported that lower extremity injuries represent a measurable portion of all moderate-to-severe automobile crash- related injuries. Thus, a simple tool to assist with the design of leg and foot injury countermeasures is desirable. The objective of this study is to develop a mathematical model which can predict load propagation and kinematics of the foot and leg in frontal automotive impacts. A multi-body model developed at the University of Virginia and validated for blunt impact to the whole foot has been used as basis for the current work. This model includes representations of the tibia, fibula, talus, hindfoot, midfoot and forefoot bones. Additionally, the model provides a means for tensioning the Achilles tendon. In the current study, the simulations conducted correspond to tests performed by the Transport Research Laboratory and the University of Nottingham on knee-amputated cadaver specimens.
Technical Paper

A Finite Element Model of the Lower Limb for Simulating Pedestrian Impacts

2005-11-09
2005-22-0008
A finite element (FE) model of the lower limb was developed to improve the understanding of injury mechanisms of thigh, knee, and leg during car-to-pedestrian impacts and to aid in the design of injury countermeasures for vehicle front-ends. The geometry of the model was reconstructed from CT scans of the Visible Human Project Database and commercial anatomical databases. The geometry and mass were scaled to those of a 50th percentile male and the entire lower limb was positioned in a standing position according to the published anthropometric references. A "structural approach" was utilized to generate the FE mesh using mostly hexahedral and quadrilateral elements to enhance the computational efficiency of the model. The material properties were selected based on a synthesis on current knowledge of the constitutive models for each tissue.
X