Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Standardized Electrical Power Quality Analysis in Accordance with MIL-STD-704

2010-11-02
2010-01-1755
MIL-STD-704 defines power quality in terms of transient, steady-state, and frequency-domain metrics that are applicable throughout a military aircraft electric power system. Maintaining power quality in more electric aircraft power systems has become more challenging in recent years due to the increase in load dynamics and power levels in addition to stricter requirements of power system characteristics during a variety of operating conditions. Further, power quality is often difficult to assess directly during experiments and aircraft operation or during data post-processing for the integrated electric power system (including sources, distribution, and loads). While MIL-STD-704 provides guidelines for compliance testing of electric load equipment, it does not provide any instruction on how to assess the power quality of power sources or the integrated power system itself, except the fact that power quality must be satisfied throughout all considered operating conditions.
Technical Paper

Design of a High-Temperature Utility Electromechanical Actuator

2012-10-22
2012-01-2214
Electric actuation on aerospace platforms has significant advantages compared to its hydraulic counterparts, particularly in terms of enhanced reliability, reduced maintenance, advanced diagnostic/performance capabilities, and possibly reduced weight and cost. It is thus not surprising that military and commercial aerospace sectors are introducing more electrical actuation architectures. A logical continuation of this trend is the replacement of hydraulic utility actuators in applications with harsh environments such as wide-range ambient temperatures and high vibration, where hydraulic actuation is still dominating. Such environments provide new challenges to the design of electric actuators, particularly considering that performance, weight, volume, and cost should be competitive with the equivalent hydraulic systems.
Technical Paper

Large Displacement Stability by Design for Robust Aircraft Electric Power Systems

2012-10-22
2012-01-2197
More electric aircraft (MEA) architectures have increased in complexity leading to a demand for evaluating the dynamic stability of their advanced electrical power systems (EPS). The system interactions found therein are amplified due to the increasingly integrated subsystems and on-demand power requirements of the EPS. Specifically, dynamic electrical loads with high peak-to-average power ratings as well as regenerative power capabilities have created a major challenge in design, control, and integration of the EPS and its components. Therefore, there exists a need to develop a theoretical framework that is feasible and useful for the specification and analysis of the stability of complex, multi-source, multi-load, reconfigurable EPS applicable to modern architectures. This paper will review linear and nonlinear system stability analysis approaches applicable to a scalable representative EPS architecture with a focus on system stability evaluation during large-displacement events.
X