Refine Your Search

Topic

Search Results

Journal Article

External Biofidelity Evaluation of Pedestrian Leg-Form Impactors

2017-03-28
2017-01-1450
Current state-of-the-art vehicles implement pedestrian protection features that rely on pedestrian detection sensors and algorithms to trigger when impacting a pedestrian. During the development phase, the vehicle must “learn” to discriminate pedestrians from the rest of potential impacting objects. Part of the training data used in this process is often obtained in physical tests utilizing legform impactors whose external biofidelity is still to be evaluated. This study uses THUMS as a reference to assess the external biofidelity of the most commonly used impactors (Flex-PLI, PDI-1 and PDI-2). This biofidelity assessment was performed by finite element simulation measuring the bumper beam forces exerted by each surrogate on a sedan and a SUV. The bumper beam was divided in 50 mm sections to capture the force distribution in both vehicles. This study, unlike most of the pedestrian-related literature, examines different impact locations and velocities.
Journal Article

Development of a Fuel Economy and Exhaust Emissions Test Method with HILS for Heavy-Duty HEVs

2008-04-14
2008-01-1318
The objective of this study was to develop a test method for heavy-duty HEVs using a hardware-in-the-loop simulator (HILS) to enhance the type-approval-test method. To achieve our objective, HILS systems for series and parallel HEVs were actually constructed to verify calculation accuracy. Comparison of calculated and measured data (vehicle speed, motor/generator power, rechargeable energy storage system power/voltage/current/state of charge, and fuel economy) revealed them to be in good agreement. Calculation error for fuel economy was less than 2%.
Technical Paper

Tractive Torque Steer for On-Center Stability1 Handling Augmentation with Controlling Differential Gear for Large-Sized Vehicles - A Comparison with Passive Read-Axle Steer

1991-11-01
912688
The running direction of a vehicle can be controlled by not only wheel steer but also torque steer. This paper introduces the tractive torque steer effect produced by a newly developed electropneumatic control system, the limited-slip differential for large-sized vehicles. This system enhances the vehicle's running stability and controllability by controlling the tractive force of the drive axle. The tractive force maintains a stable running course against disturbances such as road roughness and wind gusts, thereby enhancing the steering response and providing a better feeling of handling to the driver. The system also improves mobility. especially on low-μ roads. It is expected that a single axle equipped with this system will exhibit good performance comparable to that of tandem axle.
Technical Paper

On-board Diagnostic Expert System via an Enhanced Fault Tree Model

2006-04-03
2006-01-1567
We propose to enhance reliability based diagnosis by enhancing the fault tree model with a sensor layer for capturing evidence. We recognized the need for an automated diagnostic process that can predict and report component failure in vehicles prior to total failure of any system in the vehicle. We also want to take advantage of evidence that can be derived from sensors to reduce the amount of tests required to identify failed components.
Technical Paper

The Effects of Impurities on the Corrosion Behavior of Iron in Methanolic Solutions

1993-10-01
932342
The electrochemical and corrosion behavior of metals in aqueous environments has received substantial attention. However, relatively little work has been devoted to the electrochemistry and corrosion of metals in non-aqueous environments. Now, with greater pressures to increase fuel efficiencies and decrease exhaust emissions, alternatives and additives to gasoline (including methanol and ethanol) are receiving increased attention from government agencies and automobile manufacturers. Unfortunately, fundamental studies of the corrosion behavior of metals in these solutions are scarce. The objective of the present work is to investigate the electrochemical and corrosion behavior of iron in methanolic solutions containing Cl, H+, SO42-, and H2O. To accomplish this, a full factorial design test matrix was developed to systematically evaluate the effects of these impurities on the corrosion behavior of iron.
Technical Paper

Measurement Techniques for Angular Velocity and Acceleration in an impact Environment

1997-02-24
970575
The University of Virginia is investigating the use of a magnetohydrodynamic (MHD) angular rate sensor to measure head angular acceleration in impact testing. Output from the sensor, which measures angular velocity, must be differentiated to produce angular acceleration. As a precursor to their use in actual testing, a torsional pendulum was developed to analyze an MHD sensor's effectiveness in operating under impact conditions. Differentiated and digitally filtered sensor data provided a good match with the vibratory response of the pendulum for various magnitudes of angular acceleration. Subsequent head drop tests verified that MHD sensors are suitable for measuring head angular acceleration in impact testing.
Technical Paper

R&D and Analysis of Energy Consumption Improvement Factor for Advanced Clean Energy HEVs

2005-10-24
2005-01-3828
Ultra-low energy consumption and ultra-low emission vehicle technologies have been developed by combining petroleum-alternative clean energy with a hybrid electric vehicle (HEV) system. Their component technologies cover a wide range of vehicle types, such as passenger cars, delivery trucks, and city buses, adsorbed natural gas (ANG), compressed natural gas (CNG), and dimethyl ether (DME) as fuels, series (S-HEV) and series/parallel (SP-HEV) for hybrid types, and as energy storage systems (ESSs), flywheel batteries (FWBs), capacitors, and lithium-ion (Li-ion) batteries. Evaluation tests confirmed that the energy consumption of the developed vehicles is 1/2 of that of conventional diesel vehicles, and the exhaust emission levels are comparable to Japan's ultra-low emission vehicle (J-ULEV) level.
Technical Paper

Influence of Vehicle Body Type on Pedestrian Injury Distribution

2005-04-11
2005-01-1876
Pedestrian impact protection has been a growing area of research over the past twenty or more years. The results from many studies have shown the importance of providing protection to vulnerable road users as a means of reducing roadway fatalities. Most of this research has focused on the vehicle fleet as a whole in datasets that are dominated by passenger cars (cars). Historically, the influence of vehicle body type on injury distribution patterns for pedestrians has not been a primary research focus. In this study we used the Pedestrian Crash Data Study (PCDS) database of detailed pedestrian crash investigations to identify how injury patterns differ for pedestrians struck by light trucks, vans, and sport utility vehicles (LTVs) from those struck by cars. AIS 2+ and 3+ injuries for each segment of vehicles were mapped back to both the body region of the pedestrian injured and the vehicle source linked to that injury in the PCDS database.
Technical Paper

Analysis of Cold Start Combustion in a Direct Injection Diesel Engine

1984-02-01
840106
Fuel injection timing retardation for reducing exhaust emission of direct injection diesel engines prolongs the period to complete cold starting. Engine speed at this period varies through some accelerating and faltering stages. The speed variation and relating combustion characteristics was investigated through the measurement of cylinder pressure for each cylinder as well as the dynamic fuel injection timing and instantaneous engine speed. An improvement of cold start was shown by application of afterheat of a sheathed type glow plug and an electronic fuel injection timing control device.
Technical Paper

Advanced Semi-Trailer Tractor-Improved Riding Comfort and Simplified Connecting Operations

1985-11-11
852239
A new model of 4 × 2 semi-trailer tractor was introduced to the Japanese truck market from HINO MOTORS last year, which has improved riding comfort and remarkable features for trailer connecting/disconnecting operations. This new model has two typical methods of comfortable ride, those are full-floating cab mount system and air ride suspension for the rear axle. Since the analysis of tractor vibrations and the vehicle height control system of this model have given satisfactory results, and their outline is described here.
Technical Paper

Electronic Applications to the Powertrain of Japanese Trucks and Buses

1986-11-01
861969
Electronically controlled systems, originally developed for passenger cars, have been applied to trucks and buses since the early 1980's. With the increase of the objects for those applications their contents have become more and more sophisticated with rapid expansion and growth. This paper has summarized the results of observations on the background situations behind the applications of electronic control systems to trucks and buses in Japan. The status of the electronic applications, in particular to the powertrain, are explained and specific examples are provided. Future trends are also discussed.
Journal Article

Development of the Methodology for FCV Post-crash Fuel Leakage Testing Incorporated into SAE J2578

2010-04-12
2010-01-0133
This paper explains the new methodology for post-crash fuel leakage testing of Fuel Cell Vehicles (FCVs) and other hydrogen vehicles utilizing compressed hydrogen storage systems. This methodology was incorporated into SAE J2578 that was revised and published in January, 2009. The new methodology is based on the concept in FMVSS 303 that specifies post-crash fuel leakage test method and criteria for CNG vehicle and adopted some modifications. Specifically, the following items are addressed: (1) Allowable leakage can be accurately evaluated in test even with large size tank that obtains only small pressure drop when a given amount of leakage occurs. A new method to deal with the influence of measurement errors was devised. (2) Even though only one option of test gas and initial filling pressure is accepted in FMVSS 303, new methodology for hydrogen system allows helium and hydrogen at reduced pressure as alternatives in addition to hydrogen at service pressure.
Technical Paper

Development of Road's Gradient Anticipatory Algorithm for Hybrid Heavy Duty Truck

2014-09-30
2014-01-2377
For the purpose of reducing fuel consumption, a hybrid heavy duty truck was considered. Generally, HV (Hybrid Vehicle)'s energy is regenerated from deceleration energy in urban area. Hybrid heavy duty truck's energy is regenerated from potential energy on highway. Under this circumstance, some portion of energy may not be accumulated, because capacity of HV battery is limited. In order to maximize accumulating energy in the next descent, HV battery's energy shall be adequately reduced beforehand. This can be achieved by optimizing motor assist torque considering road's altitude and gradient. In this paper, performance of the algorithm is discussed.
Technical Paper

Correction of Beam Steering for Optical Measurements in Turbulent Reactive Flows

2021-04-06
2021-01-0428
The application of optical diagnostics in turbulent reactive flows often suffers from the beam steering (BS) effects, resulting in degraded image quality and/or measurement accuracy. This work investigated a method to correct the BS effects to improve the accuracy of optical diagnostics, with particle imagine velocimetry (PIV) measurements on turbulent reactive flames as an example. The proposed method used a guiding laser to correct BS. Demonstration in laboratory turbulent flames showed promising results where the accuracy of PIV measurement was significantly enhanced. Applicability to more complicated and practical situations are discussed.
Technical Paper

Effects of Alloying Elements on Wear Resistance of Automobile Cast Iron Materials

2014-04-01
2014-01-1011
Wear resistance is the important characteristics of cast iron materials for automobile components. Because the phenomenon of wear is a highly complicated mechanism involving many factors such as surface conditions, chemical reactions with lubricants, metals, and physics, it has not been fully explained. Therefore, it will be necessary to confirm and explain the wear mechanism to develop effective improvements. The purpose of this study was to investigate the structural change behavior and effects of alloying elements when the material top surface becomes worn, in order to improve the wear resistance of cylinder liners and other cast iron materials. For this purpose, several types of prototype materials were produced, and the relationship between components and wear resistance was investigated by using a laser microscope for quantitative observation of the degree of pearlite microstructure fineness.
Technical Paper

Development of Energy Management for Small Electric Buses

2015-04-14
2015-01-0246
An energy management method and model for small electric buses was studied. The model consists of a drive motor & inverter, a lithium ion battery, electric auxiliary devices and a mechanical powertrain. A small electric bus was developed based on the short travel distance, high charging frequency concept. Since 2012, two buses have operated as community buses in two different regions, and another bus started operations in a third region in 2013. The development of an energy management model accounting for operating conditions made it possible to keep the lithium ion battery capacity to a minimum. This paper describes energy management for this small electric bus, the design of the vehicle and the results of evaluating actual operation.
Technical Paper

Rollover Testing of a Sport Utility Vehicle (SUV) with an Inertial Measurement Unit (IMU)

2015-04-14
2015-01-1475
A follow-up case study on rollover testing with a single full-size sport utility vehicle (SUV) was conducted under controlled real-world conditions. The purpose of this study was to conduct a well-documented rollover event that could be utilized in evaluating various methods and techniques over the phases associated with rollover accidents. The phases documented and discussed, inherent to rollovers, are: pre-trip, trip, and rolling phases. With recent advances in technology, new devices and techniques have been designed which improve the ability to capture and document the unpredictable dynamic events surrounding vehicle rollovers. One such device is an inertial measurement unit (IMU), which utilizes GPS technology along with integrated sensors to report and record measured dynamic parameters real-time. The data obtained from a RT-4003 IMU device are presented and compared along with previous test data and methodology.
Technical Paper

DPR Developed for Extremely Low PM Emissions in Production Commercial Vehicles

2004-03-08
2004-01-0824
DPR is a particulate-emissions reduction system that has been developed to reduce particulate emissions in production commercial vehicles and consists of a multiple fuel-injection system, an engine electronic control unit, and a DPR-Cleaner which includes an oxidation catalyst, a catalyzed particulate filter, and silencers. DPR performs active regeneration to accelerate the regeneration of the filter under engine operating conditions where regeneration by passive regeneration alone is not sufficient. Thus, DPR makes it possible to regenerate the filter regardless of the exhaust gas temperature and enables significant reduction of particulate in commercial vehicles to levels below 0.027 g/kWh under Japan's D13 mode operating conditions. The authors describe development results of the DPR.
Technical Paper

DPR with Empirical Formula to Improve Active Regeneration of a PM Filter

2006-04-03
2006-01-0878
Diesel Particulate active Reduction system (DPR) is a system that traps particulate matter in diesel exhaust gas with a particulate filter and actively regenerates the filter when PM accumulates to a specific level. In 2003, DPR was installed on Hino's light-, medium-, and heavy-duty diesel engines, and about 50,000 units of these DPR-equipped diesel engines are currently on the market. This paper reports results of further progress made on optimization of the active regeneration function of DPR. The goal of successful development of DPR is to optimally control the system under various engine-operating conditions to regenerate the filter without producing abnormal combustion of PM and to minimize the amount of unburned PM to keep the filter from clogging. To improve the control of DPR, the combustion phenomena of PM collecting on the filter were studied through visualization, and the factors influencing combustion were determined.
Journal Article

Improving Earpiece Accelerometer Coupling to the Head

2008-12-02
2008-01-2978
As accurate measuring of head accelerations is an important aspect in predicting head injury, it is important that the measuring sensor be well-coupled to the head. Various sensors and sensor mounting schemes have been attempted in the past with varying results. This study uses a small, implantable acceleration sensor pack in the ear to study impact coupling with the human skull. The output from these ear-mounted accelerometers is compared to laboratory reference accelerometers rigidly attached to the skull of two cadaveric head specimens for both low-amplitude oscillatory tests and high-amplitude impact drop tests. The combination of sensor type and mounting scheme demonstrates the feasibility of using ear mounted sensors to predict head acceleration response. Previously reported progressive phase lag was not seen in this study, with the comparison between ear mounted accelerometers and rigidly mounted head accelerometers ranging from very good to excellent.
X