Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

2011-11-01
A new index for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U* , which expresses the connection strength between a load point and an arbitrary point within the structure enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Presenter Tadashi Naito, Honda R&D Co., Ltd.
Video

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-06-18
Currently, two consolidated aftertreatment technologies are available for the reduction of NOx emissions from diesel engines: Urea SCR (Selective Catalytic Reduction) systems and LNT (Lean NOx Trap) systems. Urea SCR technology, which has been widely used for many years at stationary sources, is becoming nowadays an attractive alternative also for light-duty diesel applications. However, SCR systems are much more effective in NOx reduction efficiency at high load operating conditions than light load condition, characterized by lower exhaust gas temperatures.
Journal Article

Advanced Design of Variable Compression Ratio Engine with Dual Piston Mechanism

2009-04-20
2009-01-1046
A Dual Piston Variable Compression Ratio (VCR) engine has been newly developed. In order to ensure the strength of the Dual Piston, the design guidelines were established. There are two advantages of this design. One is the compactness and the compatibility with a mass production engine block. Another is less power consumption required during compression ratio switching. However, the durability is a challenge for this design because of the impact load during the switching driven by the inertial force of a reciprocating piston. In order to achieve a durable configuration, it was necessary to consider the dynamics of the stress after impact, from analysis of the impacting process during the switching. The analysis of stress and deformation mode was improved in accuracy by using Computer Aided Engineering (CAE) in the designing process.
Journal Article

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

2011-04-12
2011-01-0061
A new index U* for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U*, which expresses the connection strength between a load point and an arbitrary point within the structure. U* enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Different loading conditions are applied to a body structure, and the similarity of the U* distributions is evaluated using the direction cosine and U* 2-dimensional correlation diagrams. It is shown as a result that body structures can be macroscopically grasped by using the U* distribution rather than using the stress distribution. In addition, as an example, the U* distribution of torsion loading condition is shown to comprehensively include characteristics of the U* distribution of other loading conditions.
Journal Article

Design Optimization of Interior Permanent Magnet Synchronous Motors for HEV & EV

2010-04-12
2010-01-1252
This paper proposes a new motor design procedure for reducing motor loss in hybrid vehicles (HEV) and electric vehicles (EV). To find an optimum design in a short time, a non-linear magnetic circuit model was developed for interior permanent magnet synchronous motors (IPMSM). Speed-torque curves and motor losses were calculated based on this model. Combined with Energy Management Simulation, this model makes it possible to find an optimum motor design with minimum loss.
Journal Article

Development of Estimation for Strain in Damages of Motorcycle Engine Parts When Tipped Over from Stationary State

2013-10-15
2013-32-9096
In this research, a simulation method was developed in which it was able to estimate, in the early stage of design, the strains that potentially lead to damages to motorcycle engine parts when tipped over from a stationary state. Splitting a series of phenomena from the start of tilting of motorcycle from the upright position up to the end of collision of engine parts after the contact on the ground to two groups by before and after the contact of engine parts on the ground, we applied the multi body dynamics analysis to the first group, and the elastro-plastic FEM analysis to the latter one. In the computer simulation of collision using the elastro-plastic FEM analysis, we minimized the FEM models from the entire motorcycle models and treated others as a solid model to shorten the computation period. It is also realized that the strains occurring in the engine parts can be simulated by considering only the mass of the parts which are rigidly mounted on the engine.
Journal Article

Aerodynamic Shape Optimization of an SUV in early Development Stage using a Response Surface Method

2014-09-30
2014-01-2445
In the development of an FAW SUV, one of the goals is to achieve a state of the art drag level. In order to achieve such an aggressive target, feedback from aerodynamics has to be included in the early stage of the design decision process. The aerodynamic performance evaluation and improvement is mostly based on CFD simulation in combination with some wind tunnel testing for verification of the simulation results. As a first step in this process, a fully detailed simulation model is built. The styling surface is combined with engine room and underbody detailed geometry from a similar size existing vehicle. From a detailed analysis of the flow field potential areas for improvement are identified and five design parameters for modifying overall shape features of the upper body are derived. In a second step, a response surface method involving design of experiments and adaptive sampling techniques are applied for characterizing the effects of the design changes.
Journal Article

Spatial Phase-Shift Digital Shearography for Out-of-Plane Deformation Measurement

2014-04-01
2014-01-0824
Measuring deformation under dynamic loading is still a key problem in the automobile industry. The first spatial phase-shift shearography system for relative deformation measurement is reported. Traditional temporal phase-shift technique-based shearography systems are capable of measuring relative deformation by using a reference object. However, due to its low acquisition rate, the existing temporal phase-shift shearography system can be only used under static loading situations. This paper introduces a digital shearography system which utilizes the spatial phase-shift technique to obtain an extremely high acquisition rate. The newly developed spatial phase-shift shearography system uses a Michelson-Interferometer as the shearing device. A high power laser at 532nm wavelength is used as the light source. A one mega pixels high speed CCD camera is used to record the speckle pattern interference.
Journal Article

Microstructural Contact Mechanics Finite Element Modeling Used to Study the Effect of Coating Induced Residual Stresses on Bearing Failure Mechanisms

2014-04-01
2014-01-1018
Coatings have the potential to improve bearing tribological performance. However, every coating application process and material combination may create different residual stresses and coating microstructures, and their effect on bearing fatigue and wear performance is unclear. The aim of this work is to investigate coating induced residual stress effects on bearing failure indicators using a microstructural contact mechanics (MSCM) finite element (FE) model. The MSCM FE model consists of a two-dimensional FE model of a coated bearing surface under sliding contact where individual grains are represented by FE domains. Interactions between FE domains are represented using contact element pairs. Unique to this layered rolling contact FE model is the use of polycrystalline material models to represent realistic bearing and coating microstructural behavior. The MSCM FE model was compared to a second non-microstructural contact mechanics (non-MSCM) model.
Journal Article

An Efficient Method to Calculate the Failure Rate of Dynamic Systems with Random Parameters Using the Total Probability Theorem

2015-04-14
2015-01-0425
Using the total probability theorem, we propose a method to calculate the failure rate of a linear vibratory system with random parameters excited by stationary Gaussian processes. The response of such a system is non-stationary because of the randomness of the input parameters. A space-filling design, such as optimal symmetric Latin hypercube sampling or maximin, is first used to sample the input parameter space. For each design point, the output process is stationary and Gaussian. We present two approaches to calculate the corresponding conditional probability of failure. A Kriging metamodel is then created between the input parameters and the output conditional probabilities allowing us to estimate the conditional probabilities for any set of input parameters. The total probability theorem is finally applied to calculate the time-dependent probability of failure and the failure rate of the dynamic system. The proposed method is demonstrated using a vibratory system.
Journal Article

Full Vehicle Thermal Prediction by Identification Approach from Test Results

2015-04-14
2015-01-0441
With demands for enhanced environmental performance such as fuel economy, the tendency has been to reduce the amount of wind introduced to the engine room to reduce drag. Meanwhile, exhaust gas temperatures are increasing in order to reduce emissions concentrations. As a result, the temperature environments for parts inside the engine room and underfloor parts are becoming harsher, and accurately understanding the temperature environments of parts is crucial in determining Engine room component layout during vehicle development and applying effective thermal countermeasures. Computational fluid dynamics (CFD) are effective for understanding complex phenomena such as heat generation and cooling. However, this paper reports the development of a method for accurately calculating the vehicle temperature distribution through identification from test results.
Journal Article

New Theoretical Approach for Weight Reduction on Cylinder Head

2015-04-14
2015-01-0495
Designing a lightweight and durable engine is universally important from the standpoints of fuel economy, vehicle dynamics and cost. However, it is challenging to theoretically find an optimal solution which meets both requirements in products such as the cylinder head, to which various thermal loads and mechanical loads are simultaneously applied. In our research, we focused on “non-parametric optimization” and attempted to establish a new design approach derived from the weight reduction of a cylinder head. Our optimization process consists of topology optimization and shape optimization. In the topology optimization process, we explored an optimal structure with the theoretically-highest stiffness in the given design space. This is to provide an efficient structure for pursuing both lightweight and durable characteristics in the subsequent shape optimization process.
Journal Article

Effect of Surface Heat Treatment on Corrosion-Related Failure of the Suspension Spring

2015-04-14
2015-01-0518
In this research, a new wire material made using surface-reforming heat treatment was developed in order to enhance the corrosion fatigue resistance of suspension springs. The aim of surface reforming is to improve hydrogen embrittlement characteristics through grain refinement and to improve crack propagation resistance by partial softening of hardness. The grain refinement method used an α'→γ reversed transformation by rapid short-term heating in repeated induction heating and quenching (R-IHQ) to refine the crystal grain size of SAE 9254 steel spring wire to 4 μm or less. In order to simultaneously improve the fatigue crack propagation characteristics, the possibility of reducing the hardness immediately below the spring surface layer was also examined. By applying contour hardening in the second IHQ cycle, a heat affected zone (HAZ) is obtained immediately below the surface.
Journal Article

Fracture Prediction for Automotive Bodies Using a Ductile Fracture Criterion and a Strain-Dependent Anisotropy Model

2015-04-14
2015-01-0567
In order to reduce automobile body weight and improve crashworthiness, the use of high-strength steels has increased greatly in recent years. An optimal combination of both crash safety performance and lightweight structure has been a major challenge in automobile body engineering. In this study, the Cockcroft-Latham fracture criterion was applied to predict the fracture of high-strength steels. Marciniak-type biaxial stretching tests for high-strength steels were performed to measure the material constant of the Cockcroft-Latham fracture criterion. Furthermore, in order to improve the simulation accuracy, local anisotropic parameters based on the plastic strain (strain dependent model of anisotropy) were measured using the digital image grid method and were incorporated into Hill's anisotropic yield condition by the authors. In order to confirm the validity of the Cockcroft-Latham fracture criterion, uniaxial tensile tests were performed.
Journal Article

Modeling, Analysis and Optimization of the Twist Beam Suspension System

2015-04-14
2015-01-0623
A twist beam rear suspension system is modeled, analyzed and optimized in this paper. An ADAMS model is established based on the REC (Rigid-Elastic Coupling) Theory, which is verified by FEM (Finite Element Method) approach, the effects of the geometric parameters on the twist beam suspension performance are investigated. In order to increase the calculation efficiency and improve the simulation accuracy, a neural network model and NSGA II (Non-dominated Sorting Genetic Algorithm II) are adopted to conduct a multi-objective optimization on a twist beam rear suspension system.
Journal Article

Strength Analysis of CFRP Composite Material Considering Inter-Laminar Fractures

2015-04-14
2015-01-0694
The strength characteristic of CFRP composite materials is often dependent on the internal micro-structural fracture mode. When performing a simulation on composite structures, it is necessary to take the fracture mode into account, especially in an automobile body structure with a complex three-dimensional shape, where inter-ply fractures tend to appear due to out-of-plane load inputs. In this paper, an energy-based inter-ply fracture model with fracture toughness criteria, and an intra-ply fracture model proposed by Ladeveze et al. were explained. FEM analyses were performed on three-dimensional test specimens applying both fracture models and the simulated results were compared with experimental ones. Reproducibility of the fracture mode was confirmed and the importance of combining both models was discussed.
Journal Article

Establishment of Performance Design Process for Vehicle Sound-Roof Packages Based on SEA Method

2015-04-14
2015-01-0664
The process for setting the marketability targets and achievement methods for automotive interior quietness (as related to air borne noise above 400Hz, considered the high frequency range) was established. With conventional methods it is difficult to disseminate the relationship between the performance of individual parts and the overall vehicle performance. Without new methods, it is difficult to propose detailed specifications for the optimal sound proof packages. In order to make it possible to resolve the individual components performance targets, the interior cavity was divided into a number of sections and the acoustic performance of each section is evaluated separately. This is accomplished by evaluating the acoustical energy level of each separate interior panel with the unit power of the exterior speaker excitation. The applicability of the method was verified by evaluating result against predicted value, using the new method, during actual vehicle operation.
Journal Article

Study on Analysis of Input Loads to Motorcycle Frames in Rough Road Running

2014-11-11
2014-32-0021
In this study, we developed a simulation method for rough road running condition to reproduce the behaviors of a vehicle body and to precisely estimate the input loads to the frame. We designed the simulation method focusing on a front fork model and a rider model optimized for this type of analysis. In the suspension model development, we conducted detailed measurement of the suspension characteristics on a test bench. Based on the yielded results, the friction force, as well as the spring reaction force and the damping force, was reproduced in the suspension model. The friction of the suspension varies depending on the magnitude of the reaction force associated with bending and this effect was also implemented in the model. Regarding the rider model, the actual behavior of a rider was investigated through the recorded motion video data and used to define the necessary degrees of freedom.
Journal Article

Studies of Shimmy Phenomenon by Statistical Approaches

2014-11-11
2014-32-0018
There have been a number of attempts to clarify the relationship between motorcycle specifications and shimmy phenomenon. Some of such efforts are based on equations of motion. The methods used in those efforts are suitable for analyzing motions in a fundamental structure. However, when the degree of freedom is large, it is extremely difficult to deliver an equation of motion. Therefore, a practical method cannot be found generally when applying the methods employing equations of motion. We also conducted the analysis of shimmy using multi-body dynamics simulation. The yielded results were useful only for clarifying the differences in shimmy levels among motorcycles. However, they were not helpful to understand the relationships between specifications and shimmy phenomenon.
Journal Article

Development of Improved Method for Magnetically Formed Decorative Painting

2014-11-11
2014-32-0045
Currently, there is a growing demand for application of plastic coverings for motorcycles in the market. Accordingly, decorative features for plastic coverings are increasingly important to enhance the attractiveness of exterior designs of those motorcycles. Under these circumstances, the magnetically formed decorative painting had been adopted to a mass-production model sold in Thailand in 2008. Magnetically formed decorative painting is a method in which the design patterns are formed by painting a material that contains flakes movable along with magnetic fields, while applying magnetic sheets in the ornamenting design shapes underneath the part being painted. It offers a three-dimensional appearance even though its surface has no protrusions or indentations. The degree of three-dimensionality on the paint surface appearance was defined as “plasticity” [1] (a term used in pictorial arts).
X