Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Wear Mechanism in Cummins M-11 High Soot Diesel Test Engines

1998-05-04
981372
The Cummins M-11 high soot diesel engine test is a key tool in evaluating lubricants for the new PC-7 (CH-4) performance category. M-11 rocker arms and crossheads from tests with a wide range of lubricant performance were studied by surface analytical techniques. Abrasive wear by primary soot particles is supported by the predominant appearance of parallel grooves on the worn parts with their widths matching closely the primary soot particle sizes. Soot abrasive action appears to be responsible for removing the protective antiwear film and, thus, abrades against metal parts as well. Subsequent to the removal of the antiwear film, carbide particles, graphite nodules, and other wear debris are abraded, either by soot particles or sliding metal-metal contact, from the crosshead and rocker arm metal surfaces. These particles further accelerate abrasive wear. In addition to abrasive wear, fatigue wear was evident on the engine parts.
Technical Paper

Constitutive Modeling of Polymers Subjected to High Strain Rates

2001-03-05
2001-01-0472
A biaxial test procedure is used to assess the constitutive properties of polymers in tension. The constitutive constants are derived for high strain rate applications such as those associated with crashworthiness studies. The test procedure is used in conjunction with a time- and strain-dependent quasi-linear viscoelastic constitutive law consisting of a Mooney-Rivlin formulation combined with Maxwell elements. The procedure is demonstrated by describing the stress vs. strain relationship of a rubber specimen subjected to a step-relaxation input. The constitutive equation is transformed from a nonlinear convolution integral to a set of first order differential equations. These equations, with the appropriate boundary conditions, are solved numerically to obtain transient stresses in two principal directions. Material constants for use in the explicit LS-Dyna non-linear finite element code are provided.
Technical Paper

Functional Redundancy Promotes Functional Stability in Diverse Microbial Bioreactor Communities

2003-07-07
2003-01-2509
Strategies for the inoculation of bioreactors for long-term space missions include communities of diverse composition or, alternatively, communities of a few organisms selected for their ability to efficiently catalyze reactions of interest in the reactor. The concept of functional redundancy states that in a diverse community, several different organisms may be present that are capable of effecting processes necessary to the maintenance of the system function. The concept implies that if some members of the community are lost, others will be able to keep the system from failing in the critical reactions that take place therein. In a sewage reactor in the laboratory, a diverse community at steady state was perturbed by elimination of aeration for seven days. Chemical pools (NH4+, NO3-, dissolved O2), pH, and CO2 evolution were monitored before, during, and after the perturbation.
Technical Paper

The Effects of Impurities on the Corrosion Behavior of Iron in Methanolic Solutions

1993-10-01
932342
The electrochemical and corrosion behavior of metals in aqueous environments has received substantial attention. However, relatively little work has been devoted to the electrochemistry and corrosion of metals in non-aqueous environments. Now, with greater pressures to increase fuel efficiencies and decrease exhaust emissions, alternatives and additives to gasoline (including methanol and ethanol) are receiving increased attention from government agencies and automobile manufacturers. Unfortunately, fundamental studies of the corrosion behavior of metals in these solutions are scarce. The objective of the present work is to investigate the electrochemical and corrosion behavior of iron in methanolic solutions containing Cl, H+, SO42-, and H2O. To accomplish this, a full factorial design test matrix was developed to systematically evaluate the effects of these impurities on the corrosion behavior of iron.
Technical Paper

The Effect of Thermal Cycling on the Mechanical Properties of the Macro-Interface in Squeeze Cast Composites

1994-03-01
940810
Selectively reinforced, squeeze cast automotive pistons contain a boundary between the reinforced and unreinforced regions. This boundary is known as the macro-interface. Due to the difference in CTE between the composite and unreinforced matrix, the macro-interface can be the site of residual stress formation during cooling from the casting or heat treatment temperature. Subsequent thermal exposure, particularly thermal cycling, may produce cyclic stress at this interface causing it to experience fatigue. It has been found that matrix precipitates at the macro-interface and the aging behavior of the matrix also may play a role in defining the strength of the macro-interface during thermal cycling conditions.
Technical Paper

Intelligent Selection of Materials for Brake Linings

2000-10-20
2000-01-2779
Friction materials used in the brake linings of automobiles, trucks, buses and other vehicles are required to satisfy a number of performance demands: they must provide a dependable, consistent level of friction, excellent resistance to wear, adequate heat dissipation, structural integrity, low cost and, if possible, light weight. No single material can meet all of these often conflicting performance criteria, and as a consequence, multiphase composites have been developed, consisting typically of a dozen or more different materials. The choice of materials is crucial in determining the performance attained, yet to date, braking material compositions have been developed largely on the basis of empirical observations.
Technical Paper

Reducing the Risk of Driver Injury from Common Steering Control Devices in Frontal Collisions

1999-03-01
1999-01-0759
Steering control devices are used by people who have difficulty gripping the steering wheel. These devices have projections that may extend up to 14 cm toward the occupant. Testing indicated that contact with certain larger steering control devices with tall rigid projections could severely injure a driver in a frontal collision. In order to reduce this injury risk, an alternative, less injurious design was developed and tested. This design, which included replacing unyielding aluminum projections with compliant plastic ones, produced significantly lower peak contact pressure and less damage to the chest of a cadaver test subject, while maintaining the strength necessary to be useful.
Technical Paper

Characterizing Galling Conditions in Sheet Metal Stamping

2024-04-09
2024-01-2856
Multiple experimental studies were performed on galling intiation for variety of tooling materials, coatings and surface treatments, sheet materials with various surface textures and lubrication. Majority of studies were performed for small number of samples in laboratory conditions. In this paper, the methodology of screening experiment using different combinations of tooling configurations and sheet material in the lab followed by the high volume small scale U-bend performed in the progressive die on the mechanical press is discussed. The experimental study was performed to understand the effect of the interface between the sheet metal and the die surface on sheet metal flow during stamping operations. Aluminum sheet AA5754 2.5mm thick was used in this experimentation. The sheet was tested in laboratory conditions by pulling between two flat insert with controllable clamping force and through the drawbead system with variable radii of the female bead.
X