Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Symbolic Formulation of Multibody Dynamic Equations for Wheeled Vehicle Systems on Three-Dimensional Roads

2010-04-12
2010-01-0719
A method to improve the computational efficiency of analyzing wheeled vehicle systems on three-dimensional (3-D) roads has been developed. This was accomplished by creating a technique to incorporate the tire on a 3-D road in a multibody dynamics model of the vehicle with an approach that formulates the governing equations using symbolic formulation. For general handling analysis performed on the vehicle, the tire forces and moments are determined using a tire model that represents the tire as a set of mathematical expressions. Since these expressions need numerical values to determine the forces and moments, a symbolic solution does not exist. Therefore, the evaluation of the tire forces and moments needs to be done during simulation. However, symbolic operations can be used when the governing equations are formulated to develop an efficient method to evaluate these forces.
Journal Article

Physics-Based Models, Sensitivity Analysis, and Optimization of Automotive Batteries

2013-10-14
2013-01-2560
The analysis of nickel metal hydride (Ni-MH) battery performance is very important for automotive researchers and manufacturers. The performance of a battery can be described as a direct consequence of various chemical and physical phenomena taking place inside the container. In this paper, a physics-based model of a Ni-MH battery will be presented. To analyze its performance, the efficiency of the battery is chosen as the performance measure, which is defined as the ratio of the energy output from the battery and the energy input to the battery while charging. Parametric sensitivity analysis will be used to generate sensitivity information for the state variables of the model. The generated information will be used to showcase how sensitivity information can be used to identify unique model behavior and how it can be used to optimize the capacity of the battery. The results will be validated using a finite difference formulation.
Technical Paper

Improving Stability of a Narrow Track Personal Vehicle using an Active Tilting System

2014-04-01
2014-01-0087
A compact sized vehicle that has a narrow track could solve problems caused by vehicle congestion and limited parking spaces in a mega city. Having a smaller footprint reduces the vehicle's total weight which would decrease overall vehicle power consumption. Also a smaller and narrower vehicle could travel easily through tight and congested roads that would speed up the traffic flow and hence decrease the overall traffic volume in urban areas. As an additional benefit of having a narrow track length, a driver can experience similar motorcycle riding experience without worrying about bad weather conditions since a driver sits in a weather protected cabin. However, reducing the vehicle's track causes instability in vehicle dynamics, which leads to higher possibility of rollovers if the vehicle is not controlled properly. A three wheel personal vehicle with an active tilting system is designed in MapleSim.
Technical Paper

A Real-Time Control-Oriented Mean Value Engine Model Including Manifold Gas Dynamics and Engine Thermals with Parameter Identification for a Toyota Prius

2021-04-06
2021-01-0394
A real-time control-oriented mean value engine plant model that includes engine thermals and cold starts is developed for a Toyota Prius 2015 plug-in hybrid engine in Modelica and MapleSim and validated experimentally. The model consists of an engine block model, intake and exhaust manifold models, and a throttle model. An advantage of the engine block model is the ability to compute the frictional Mean Effective Pressure during engine cold starts from calculated air, oil, and coolant temperatures at various locations in the engine block. Traditionally, engine thermals are modelled utilizing thermal resistances and capacitors. The proposed model utilizes linear graph theory with terminal equations to study the topology of the different components that affect engine thermals, including engine head, liner, coolant, and oil sump.
Technical Paper

Comparison of Optimization Techniques for Lithium-Ion Battery Model Parameter Estimation

2014-04-01
2014-01-1851
Due to rising fuel prices and environmental concerns, Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) have been gaining market share as fuel-efficient, environmentally friendly alternatives. Lithium-ion batteries are commonly used in EV and HEV applications because of their high power and energy densities. During controls development of HEVs and EVs, hardware-in-the-loop simulations involving real-time battery models are commonly used to simulate a battery response in place of a real battery. One physics-based model which solves in real-time is the reduced-order battery model developed by Dao et al. [1], which is based on the isothermal model by Newman [2] incorporating concentrated solution theory and porous electrode theory [3]. The battery models must be accurate for effective control; however, if the battery parameters are unknown or change due to degradation, a method for estimating the battery parameters to update the model is required.
Technical Paper

Development of a High-Fidelity Series-Hybrid Electric Vehicle Model using a Mathematics-Based Approach

2011-05-17
2011-39-7201
The recent increase in oil prices and environmental concerns have attracted various research efforts on hybrid electric vehicles (HEVs) which provide promising alternatives to conventional engine-powered vehicles with better fuel economy and fewer emissions. To speed up the design and prototyping processes of new HEVs, a method that automatically generates mathematics equations governing the vehicle system response in an optimized symbolic form is desirable. To achieve this goal, we employed MapleSimTM, a new physical modeling tool developed by Maplesoft Inc., to develop the multi-domain model of a series-HEV, utilizing the symbolic computing algorithms of Maple software package to generate an optimized set of governing equations. The HEV model consists of a mean-value internal combustion engine (ICE), a chemistry-based Ni-MH battery pack, and a multibody vehicle model. Simulations are then used to demonstrate the performance of the developed HEV system.
X