Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Identification of the Plane Strain Yield Strength of Anisotropic Sheet Metals Using Inverse Analysis of Notch Tests

2022-03-29
2022-01-0241
Plane strain tension is the critical stress state for sheet metal forming because it represents the extremum of the yield function and minima of the forming limit curve and fracture locus. Despite its important role, the stress response in plane strain deformation is routinely overlooked in the calibration of anisotropic plasticity models due to challenges and uncertainty in its characterization. Plane strain tension test specimens used for constitutive characterization typically employ large gage width-to-thickness ratios to promote a homogeneous plane strain stress state. Unfortunately, the specimens are limited to small strain levels due to fracture initiating at the edges in uniaxial tension. In contrast, notched plane strain tension coupons designed for fracture characterization have become common in the automotive industry to calibrate stress-state dependent fracture models. These coupons have significant stress and strain gradients across the gage width to avoid edge fracture.
Technical Paper

Design of a Test Geometry to Characterize Sheared Edge Fracture in a Uniaxial Bending Mode

2023-04-11
2023-01-0730
The characterization of sheet metals under in-plane uniaxial bending is challenging due to the aspect ratios involved that can cause buckling. Anti-buckling plates can be employed but require compensation for contact pressure and friction effects. Recently, a novel in-plane bending fixture was developed to allow for unconstrained sample rotation that does not require an anti-buckling device. The objective of the present study is to design the sample geometry for sheared edge fracture characterization under in-plane bending along with a methodology to resolve the strains exactly at the edge. A series of virtual experiments were conducted for a 1.0 mm thick model material with different hardening rates to identify the influence of gage section length, height, and the radius of the transition region on the bend ratio and potential for buckling. Two specimen geometries are proposed with one suited for constitutive characterization and the other for sheared edge fracture.
Technical Paper

Formability Characterization of 3rd Generation Advanced High-Strength Steel and Application to Forming a B-Pillar

2021-04-06
2021-01-0267
The objective of this study was to assess the formability of two 3rd generation advanced high strength steels (3rd Gen AHSS) with ultimate strengths of 980 and 1180 MPa and evaluate their applicability to a structural B-Pillar for a mid-sized sport utility vehicle. The constitutive behavior including strain-rate effects and formability were characterized to generate the material models for use within AutoForm R8 software to design the B-pillar tooling and forming process. An extended Bressan-Williams instability model was able to deterministically predict the forming limit curves obtained using Marciniak tests. The tooling for the representative B-pillar was designed and fabricated with Bowman Precision Tooling and forming trials conducted for both 3rd Gen steels that had a thickness of 1.4 mm.
Technical Paper

Design and Evaluation of an in-Plane Shear Test for Fracture Characterization of High Ductility Metals

2024-04-09
2024-01-2858
Fracture characterization of automotive metals under simple shear deformation is critical for the calibration of advanced fracture models employed in forming and crash simulations. In-plane shear fracture tests of high ductility materials have proved challenging since the sample edge fails first in uniaxial tension before the fracture limit in shear is reached at the center of the gage region. Although through-thickness machining is undesirable, it appears required to promote higher strains within the shear zone. The present study seeks to adapt existing in-plane shear geometries, which have otherwise been successful for many automotive materials, to have a local shear zone with a reduced thickness. It is demonstrated that a novel shear zone with a pocket resembling a “peanut” can promote shear fracture within the shear zone while reducing the risk for edge fracture. An emphasis was placed upon machinability and surface quality for the design of the pocket in the shear zone.
X