Refine Your Search

Topic

Search Results

Journal Article

Ferritic Nitrocarburizing of SAE 1010 Plain Carbon Steel Parts

2015-04-14
2015-01-0601
Ferritic nitrocarburizing offers excellent wear, scuffing, corrosion and fatigue resistance by producing a thin compound layer and diffusion zone containing ε (Fe2-3(C, N)), γ′ (Fe4N), cementite (Fe3C) and various alloy carbides and nitrides on the material surface. It is a widely accepted surface treatment process that results in smaller distortion than carburizing and carbonitriding processes. However this smaller distortion has to be further reduced to prevent the performance issues, out of tolerance distortion and post grinding work hours/cost in an automotive component. A numerical model has been developed to calculate the nitrogen and carbon composition profiles of SAE 1010 torque converter pistons during nitrocarburizing treatment. The nitrogen composition profiles are modeled against the part thickness to predict distortion.
Technical Paper

Combustion Characterization of Neat n-Butanol in an SI Engine

2020-04-14
2020-01-0334
Increasingly stringent emission standards have promoted the interest in alternate fuel sources. Because of the comparable energy density to the existing fossil fuels and renewable production, alcohol fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. In this research, the combustion characteristics of neat n-butanol are analyzed under spark ignition operation using a single cylinder SI engine. The fuel is injected into the intake manifold using a port-fuel injector. Two modes of charge dilution were used in this investigation to test the limits of stable engine operation, namely lean burn using excess fresh air and exhaust gas recirculation (EGR). The in-cylinder pressure measurement and subsequently, heat release analysis are used to investigate the combustion characteristics of the fuel under low load SI engine operation.
Journal Article

Simulation of the Axial Cutting Deformation of AA6061-T6 Round Tubes Utilizing Eulerian and Mesh Free Finite Element Formulations

2008-04-14
2008-01-1117
Experimental and numerical studies have been completed on the deformation behaviour of round AA6061-T6 aluminum extrusions during an axial cutting deformation mode employing both curved and straight deflectors to control the bending deformation of petalled side walls. Round extrusions of length 200 mm with a nominal wall thickness of 3.175 mm and an external diameter of 50.8 mm were considered. A heat treated 4140 steel alloy cutter and deflectors, both straight and curved, were designed and manufactured for the testing considered. The four blades of the cutter had an approximate average thickness of 1.00 mm which were designed to penetrate through the round AA6061-T6 extrusions. Experimental observations illustrated high crush force efficiencies of 0.82 for the extrusions which experienced the cutting deformation mode with the deflectors. Total energy absorption during the cutting process was approximately 5.48 kJ.
Journal Article

An Empirical Study to Extend Engine Load in Diesel Low Temperature Combustion

2011-08-30
2011-01-1814
In this work, engine tests were performed to realize EGR-enabled LTC on a single-cylinder common-rail diesel engine with three different compression ratios (17.5, 15 and 13:1). The engine performance was first investigated at 17.5:1 compression ratio to provide baseline results, against which all further testing was referenced. The intake boost and injection pressure were progressively increased to ascertain the limiting load conditions for the compression ratio. To extend the engine load range, the compression ratio was then lowered and EGR sweep tests were again carried out. The strength and homogeneity of the cylinder charge were enhanced by using intake boost up to 3 bar absolute and injection pressure up to 180 MPa. The combustion phasing was locked in a narrow crank angle window (5~10° ATDC), during all the tests.
Technical Paper

Wear Performances of Gray Cast Iron Brake Rotor with Plasma Electrolytic Aluminating Coating against Different Pads

2020-10-05
2020-01-1623
Gray cast iron brake rotor experiences substantial wear during braking and contributes largely to the wear debris emissions. Surface coating on the gray cast iron rotor represents a trending approach dealing with the problems. In this research, a new plasma electrolytic aluminating (PEA) process was used for preparing an alumina-based ceramic coating with metallurgical bonding to the gray cast iron. Three different types of brake pads (ceramic, semi-metallic and non asbestos organic (NAO)) were used for tribotests. Performances of PEA coatings vs. different brake pad materials were comparatively investigated with respect to their coefficients of friction (COFs) and wear. The PEA-coated brake rotor has a dimple-like surface which promotes the formation of a thin transferred film to protect the rotor from wear. The transferred film materials come from the wear debris of the pads. The secondary plateaus are regenerated on the brake pads through compacting wear debris of the pads.
Technical Paper

Heat Release Based Adaptive Control to Improve Low Temperature Diesel Engine Combustion

2007-04-16
2007-01-0771
Heat-release and cylinder pressure based adaptive fuel-injection control tests were performed on a modern common-rail diesel engine to improve the engine operation in the low-temperature combustion (LTC) region. A single shot injection strategy with heavy amount of exhaust gas recirculation (EGR) was used to modulate the in-cylinder charge conditions to achieve the low-temperature combustion. Adaptive fuel-injection techniques were used to anchor the cylinder pressure characteristics in the desired crank angle window and thereby stabilize the engine operation. The response of the adaptive control to boost, fueling, and engine speed variations was also tested. A combination of adaptive fuel-injection and automatic boost/back-pressure controls had helped to make the transient emissions comparable to the steady-state LTC emissions.
Technical Paper

Development of a Fuel Injection Strategy for Diesel LTC

2008-04-14
2008-01-0057
A production V-8 engine was redesigned to run on low temperature combustion (LTC) with conventional Diesel fuel. Two fuel injection strategies were used to attain reduction in soot and NOx; a) early premixed injection strategy: fuel injected early during the compression stroke and b) late premixed injection strategy: fuel injected close to TDC with heavy EGR. The early premixed injection strategy yielded low NOx and soot but struggled to vaporize the fuel as noted in unburned hydrocarbons readings. The late premixed injection strategy introduced the fuel at higher in-cylinder temperatures and densities, improving the fuel's vaporization and limited the unburned hydrocarbon and carbon monoxide. The use of high EGR and high injection pressure for late premixed injection strategy provided sufficiently long ignition delay that resulted in partially premixed cylinder charge before combustion, and thereby prevented high soot, even in presence of high EGR.
Technical Paper

Wind Tunnel Study on the “Wake Bubble” of Model Truck

2008-04-14
2008-01-0739
Heavy traffic volume makes tailgating a common picture on the road today. Wake interference, particularly in the scenario when a relatively small sedan drives into the wake of a large truck, may raise some serious highway safety concerns. In this paper, the characteristics of the separation bubble of model trucks with various degrees of details are studied. The objective is to find out the impact of truck model details on the characteristics of the wake bubble. Our wind tunnel results revealed that the degree of model detail has a significant effect on the wake bubble; the bubble length increases with model details.
Technical Paper

Real-time Heat Release Analysis for Model-based Control of Diesel Combustion

2008-04-14
2008-01-1000
A number of cylinder-pressure derived parameters including the crank angles of maximum pressure, maximum rate of pressure rise, and 50% heat released are considered as among the desired feedback for cycle-by-cycle adaptive control of diesel combustion. For real-time computation of these parameters, the heat release analyses based on the first law of thermodynamics are used. This paper intends to identify the operating regions where the simplified heat release approach provides sufficient accuracy for control applications and also highlights those regions where its use can lead to significant errors in the calculated parameters. The effects of the cylinder charge-to-wall heat transfer and the temperature dependence of the specific heat ratio on the model performance are reported. A new computationally efficient algorithm for estimating the crank angle of 50% heat released with adequate accuracy is proposed for computation in real-time.
Technical Paper

Prompt Heat Release Analysis to Improve Diesel Low Temperature Combustion

2009-06-15
2009-01-1883
Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. The robustness and efficiency of LTC operation in diesel engines can be enhanced with improvements in the promptness and accuracy of combustion control. A set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations. The cylinder pressure traces were analyzed to update the heat release rate concurrently as the combustion process proceeds prior to completing an engine cycle. Engine dynamometer tests demonstrated that such prompt heat release analysis was effective to optimize the LTC and the split combustion events for better fuel efficiency and exhaust emissions.
Technical Paper

Wear and Galvanic Corrosion Protection of Mg alloy via Plasma Electrolytic Oxidation Process for Mg Engine Application

2009-04-20
2009-01-0790
Sliding wear of magnesium (Mg) engine cylinder bore surfaces and corrosion of Mg engine coolant channels are the two unsolved critical issues that automakers have to deal with in development of magnesium-intensive engines. In this paper, Plasma Electrolytic Oxidation (PEO) process was used to produce oxide coatings on AJ62 Mg alloy to provide wear and corrosion protection. In order to optimize the PEO process, orthogonal experiments were conducted to investigate the effect of PEO process parameters on the wear properties of PEO coatings. The PEO coatings showed a much better wear resistance, as well as a smaller friction coefficient, than the AJ62 substrate. The galvanic corrosion property of AJ62 Mg coupled with stainless steel and aluminum (Al) was investigated via immersion corrosion test in an engine coolant. Applying PEO coating on Mg can effectively prevent the galvanic corrosion attack to Mg.
Technical Paper

Development of a Plastic Manifold Noise Syntheses Technique

2001-03-05
2001-01-1144
The effects of engine noise in plastic manifolds has been a subject of study in the automotive Industry. Several SAE papers have been published on the subject. Most testing described requires access to engine dynamometers and other elaborate equipment. As part of a general study of plastic intake manifold noise characteristics, this study was undertaken to develop a synthesis bench for enabling low cost noise testing of plastic induction systems including plastic manifolds. Computer simulation of engine intake noise was used as part of a correlation between the plastic manifold synthesis bench and actual engine measurements. The Fast Fourier Transform (FFT) analysis provided analogous results between the predicted theoretical and two measured signals with a fundamental frequency at approximately 80 Hz. Qualitative and statistical comparisons of the time domain signals also proved equally favourable. Recommendations are included for further development of this approach.
Technical Paper

In-Cylinder Pressure Measurements with Optical Fiber and Piezoelectric Pressure Transducers

2002-03-04
2002-01-0745
Highly accurate cylinder pressure data can be acquired using a wall-mounted and water-cooled quartz piezoelectric transducer. However, this type of transducer does not satisfy the cost and packaging constraints when used in a production engine application. A potential solution to these issues that has been the interest of many is the much smaller and less expensive optical fiber based pressure transducer. This research compares Kistler piezoelectric transducers to Optrand optical fiber transducers. The influence of the transducer type and mounting arrangement on the quality of cylinder pressure data was examined. The transducers were evaluated on a DaimlerChrysler 4.7L V-8 Compressed Natural Gas fuelled test engine. The analysis method is comprised of examining measured individual cycle and ensemble-averaged cylinder pressure records to assess the quality of the data and its usefulness for engine management.
Technical Paper

Investigating Process Parameters and Microhardness Predictive Modeling Approaches for Single Bead 420 Stainless Steel Laser Cladding

2017-03-28
2017-01-0283
Laser cladding is a novel process of surface coating, and researchers in both academia and industry are developing additive manufacturing solutions for large, metallic components. There are many interlinked process parameters associated with laser cladding, which may have an impact on the resultant microhardness profile throughout the bead zone. A set of single bead laser cladding experiments were done using a 4 kW fiber laser coupled with a 6-axis robotic arm for 420 martensitic stainless steel powder. A design of experiments approach was taken to explore a wide range of process parameter settings. The goal of this research is to determine whether robust predictive models for hardness can be developed, and if there are predictive trends that can be employed to optimize the process settings for a given set of process parameters and microhardness requirements.
Technical Paper

Load and Lubricating Oil Effects on Friction of a PEO Coating at Different Sliding Velocities

2017-03-28
2017-01-0464
Friction between the piston and cylinder accounts for large amount of the friction losses in an internal combustion (IC) engine. Therefore, any effort to minimize such a friction will also result in higher efficiency, lower fuel consumption and reduced emissions. Plasma electrolytic oxidation (PEO) coating is considered as a hard ceramic coating which can provide a dimpled surface for oil retention to bear the wear and reduce the friction from sliding piston rings. In this work, a high speed pin-on-disc tribometer was used to generate the boundary, mixed and hydrodynamic lubrication regimes. Five different lubricating oils and two different loads were applied to do the tribotests and the COFs of a PEO coating were studied. The results show that the PEO coating indeed had a lower COF in a lower viscosity lubricating oil, and a smaller load was beneficial to form the mixed and hydrodynamic lubricating regimes earlier.
Technical Paper

General and Galvanic Corrosion Behavior of Aluminized Ultra-High Strength Steel (UHSS) and Magnesium Alloy AZ35 Altered by Plasma Electrolytic Oxidation Coating Processes

2017-03-28
2017-01-0506
Ultra-high strength steel (UHSS) and magnesium (Mg) alloy have found their importance in response to automotive strategy of light weighting. UHSS to be metal-formed by hot stamping usually has a hot-dipped aluminum-silicon alloy layer on its surface to prevent the high temperature scaling during the hot stamping and corrosion during applications. In this paper, a plasma electrolytic oxidation (PEO) process was used to produce ceramic oxide coatings on aluminized UHSS and Mg with intention to further improve their corrosion resistances. A potentiodynamic polarization corrosion test was employed to evaluate general corrosion properties of the individual alloys. Galvanic corrosion of the aluminized UHSS and magnesium alloy coupling with and without PEO coatings was studied by a zero resistance ammeter (ZRA) test. It was found that the heating-cooling process simulating the hot stamping would reduce anti-corrosion properties of aluminized UHSS due to the outward iron diffusion.
Technical Paper

Wear of D2 Tool Steel Dies during Trimming DP980-type Advanced High Strength Steel (AHSS) for Automotive Parts

2017-03-28
2017-01-1706
Automobile body panels made from advanced high strength steel (AHSS) provide high strength-to-mass ratio and thus AHSS are important for automotive light-weighting strategy. However, in order to increase their use, the significant wear damage that AHSS sheets cause to the trim dies should be reduced. The wear of dies has undesirable consequences including deterioration of trimmed parts' edges. In this research, die wear measurement techniques that consisted of white-light optical interferometry methods supported by large depth-of-field optical microscopy were developed. 1.4 mm-thick DP980-type AHSS sheets were trimmed using dies made from AISI D2 steel. A clearance of 10% of the thickness of the sheets was maintained between the upper and lower dies. The wear of the upper and lower dies was evaluated and material abrasion and chipping were identified as the main damage features at the trim edges.
Technical Paper

Engine Fault Detection Using Vibration Signal Reconstruction in the Crank-Angle Domain

2011-05-17
2011-01-1660
Advanced engine test methods incorporate several different sensing and signal processing techniques for identifying and locating manufacturing or assembly defects of an engine. A successful engine test method therefore, requires advanced signal processing techniques. This paper introduces a novel signal processing technique to successfully detect a faulty internal combustion engine in a quantitative manner. Accelerometers are mounted on the cylinder head and lug surfaces while vibration signals are recorded during engine operation. Using the engine's cam angular position, the vibration signals are transformed from the time domain to the crank-angle domain. At the heart of the transformation lies interpolation. In this paper, linear, cubic spline and sinc interpolation methods are demonstrated for reconstructing vibration signals in the crank-angle domain.
Technical Paper

Study of Heat Release Shaping via Dual-Chamber Piston Bowl Design to Improve Ethanol-Diesel Combustion Performance

2017-03-28
2017-01-0762
In this work, an innovative piston bowl design that physically divides the combustion chamber into a central zone and a peripheral zone is employed to assist the control of the ethanol-diesel combustion process via heat release shaping. The spatial combustion zone partition divides the premixed ethanol-air mixture into two portions, and the combustion event (timing and extent) of each portion can be controlled by the temporal diesel injection scheduling. As a result, the heat release profile of ethanol-diesel dual-fuel combustion is properly shaped to avoid excessive pressure rise rates and thus to improve the engine performance. The investigation is carried out through theoretical simulation study and empirical engine tests. Parametric simulation is first performed to evaluate the effects of heat release shaping on combustion noise and engine efficiency and to provide boundary conditions for subsequent engine tests.
Technical Paper

An Open Cycle Simulation of DI Diesel Engine Flow Field Effect on Spray Processes

2012-04-16
2012-01-0696
Clean diesel engines are one of the fuel efficient and low emission engines of interest in the automotive industry. The combustion chamber flow field and its effect on fuel spray characteristics plays an important role in improving the efficiency and reducing the pollutant emission in a direct injection diesel engine, in terms of influencing processes of breakup, evaporation mixture formation, ignition, combustion and pollutant formation. Ultra-high injection pressure fuel sprays have benefits in jet atomization, penetration and air entrainment, which promote better fuel-air mixture and combustion. CFD modeling is a valuable tool to acquire detailed information about these important processes. In this research, the characteristics of ultra-high injection pressure diesel fuel sprays are simulated and validated in a quiescent constant volume chamber. A profile function is utilized in order to apply variable velocity and mass flow rate at the nozzle exit.
X