Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Simulation of the Axial Cutting Deformation of AA6061-T6 Round Tubes Utilizing Eulerian and Mesh Free Finite Element Formulations

2008-04-14
2008-01-1117
Experimental and numerical studies have been completed on the deformation behaviour of round AA6061-T6 aluminum extrusions during an axial cutting deformation mode employing both curved and straight deflectors to control the bending deformation of petalled side walls. Round extrusions of length 200 mm with a nominal wall thickness of 3.175 mm and an external diameter of 50.8 mm were considered. A heat treated 4140 steel alloy cutter and deflectors, both straight and curved, were designed and manufactured for the testing considered. The four blades of the cutter had an approximate average thickness of 1.00 mm which were designed to penetrate through the round AA6061-T6 extrusions. Experimental observations illustrated high crush force efficiencies of 0.82 for the extrusions which experienced the cutting deformation mode with the deflectors. Total energy absorption during the cutting process was approximately 5.48 kJ.
Technical Paper

Observations of the Relative Performance of Magnesium and Aluminum Steering Wheel Skeletons with Identical Geometry

2000-03-06
2000-01-0784
Automotive steering wheels depend on a structural skeleton made of steel, aluminum, or magnesium to be the basis for the mechanical properties of the finished part. The mechanical properties of concern are the fatigue properties and the crash performance. The purpose of this study was to evaluate the crash and the fatigue performance of a steering wheel skeleton fabricated by high pressure die casting. Two materials were used to produce two groups of wheels with identical geometry. The production part was designed, optimized and fabricated with AM50A magnesium. The production magnesium component met all of the regulatory design and performance requirements. A small sample run was made in a proprietary aluminum - magnesium alloy. The fatigue and crash properties were evaluated empirically. In fatigue testing, the aluminum skeletons displayed a significant improvement, with respect to the magnesium skeletons, in the number of cycles to failure at the loads tested.
Technical Paper

A Comparison of the Mechanical Performance of AA6061-T6 Extrusions Subjected to Axial Crushing and Axial Cutting

2019-04-02
2019-01-1094
Conventional axially loaded energy absorbers dissipate kinetic energy through progressive folding. The significant fluctuations in load and high risk of transition to global bending are drawbacks that engineers have attempted to mitigate through several methods. A novel energy dissipation mechanism, referred to as axial cutting, utilizes thin-walled extrusions and a strengthened cutting tool to absorb energy in an axial impact. Compared to progressive folding, this can be achieved with minimal fluctuations in load during the deformation process. Based upon estimates from finite element models, a series of test cases were postulated where, for 8 and 10-bladed cutting scenarios, greater total energy absorption could be achieved through axial cutting than with progressive folding of geometrically similar extrusions. The specimens were AA6061 extrusions having T6 temper conditions that possessed 63.5 mm outer diameters and 1.5 mm wall thicknesses.
X