Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Hydrocarbon Speciation of Diesel Ignited Ethanol and Butanol Engines

2016-04-05
2016-01-0773
Dual fuel applications of alcohol fuels such as ethanol or butanol through port injection with direct injection of diesel can be effective in reduction of NOx. However, these dual fuel applications are usually associated with an increase in the incomplete combustion products such as hydrocarbons (HC), carbon monoxide (CO), and hydrogen (H2) emissions. An analysis of these products of incomplete combustion and the resulting combustion efficiency penalty was made in the diesel ignited alcohol combustion modes. The effect of EGR application was evaluated using ethanol and butanol as the port injected fuel, with varying alcohol fractions at the mid-load condition (10 -12 bar IMEP). The impact of varying the engine load (5 bar to 19 bar IMEP) in the diesel ignited ethanol mode on the incomplete combustion products was also studied. Emission measurements were taken and the net fuel energy loss as a result of the incomplete combustion was estimated.
Technical Paper

Mode Switching to Improve Low Load Efficiency of an Ethanol-Diesel Dual-Fuel Engine

2017-03-28
2017-01-0771
The dual-fuel application using ethanol and diesel fuels can substantially improve the classical trade-off between oxides of nitrogen (NOx) and smoke, especially at moderate-to-high load conditions. However, at low engine load levels, the use of a low reactivity fuel in the dual-fuel application usually leads to increased incomplete combustion products that in turn result in a significant reduction of the engine thermal efficiency. In this work, engine tests are conducted on a high compression ratio, single cylinder dual-fuel engine that incorporates the diesel direct-injection and ethanol port-injection. Engine load levels are identified, at which, diesel combustion offers better efficiency than the dual-fuel combustion while attaining low NOx and smoke emissions. Thereafter, a cycle-to-cycle based closed-loop controller is implemented for the combustion phasing and engine load control in both the diesel and dual-fuel combustion regimes.
Technical Paper

Control-Oriented Model for Electric Power Steering System

2006-04-03
2006-01-0938
Electric power steering (EPS) systems have been used to replace hydraulic power steering systems in vehicles. How to enhance the safety and reliability while reducing the manufacturing cost of EPS systems is still of strong interest to the automotive industry. In this paper, modeling analysis is conducted for advanced control of electric power steering system. Specifically, a mathematical model is proposed for a column-mounted EPS system and then a simplified model for control design purpose is proposed. Issues that need to be addressed, such as noise/ disturbance attenuation as well as potential fault detection/tolerance are analyzed. Simulation using CarSim™ is also presented for an optimal control design using the simplified model as an example to validate the proposed ideas.
X