Refine Your Search

Topic

Search Results

Journal Article

Simulation of the Axial Cutting Deformation of AA6061-T6 Round Tubes Utilizing Eulerian and Mesh Free Finite Element Formulations

2008-04-14
2008-01-1117
Experimental and numerical studies have been completed on the deformation behaviour of round AA6061-T6 aluminum extrusions during an axial cutting deformation mode employing both curved and straight deflectors to control the bending deformation of petalled side walls. Round extrusions of length 200 mm with a nominal wall thickness of 3.175 mm and an external diameter of 50.8 mm were considered. A heat treated 4140 steel alloy cutter and deflectors, both straight and curved, were designed and manufactured for the testing considered. The four blades of the cutter had an approximate average thickness of 1.00 mm which were designed to penetrate through the round AA6061-T6 extrusions. Experimental observations illustrated high crush force efficiencies of 0.82 for the extrusions which experienced the cutting deformation mode with the deflectors. Total energy absorption during the cutting process was approximately 5.48 kJ.
Technical Paper

Variable Torque Distribution Yaw Moment Control for Hybrid Powertrains

2007-04-16
2007-01-0278
This paper proposes and evaluates the use of a robust variable torque distribution (VTD) yaw moment control for an all wheel drive (AWD) hybrid vehicle prototype currently under development. The proposed VTD controller was used to improve the linearity of vehicle response to driver input through the modulation of front-to-rear torque distribution and a corrective torque differential between the left and right rear wheels. The development of a non-linear vehicle model and a reference model tracking sliding mode based control are discussed. The efficacy of the proposed control system was demonstrated through the use of numerical simulations using the developed non-linear vehicle model. The simulation results presented indicate the effectiveness of the proposed system and the potential restrictions to such a system including tire saturation and drivetrain component limitations.
Technical Paper

Active Four Wheel Brake Proportioning for Improved Performance and Safety

2008-04-14
2008-01-1224
A vehicle undergoing longitudinal or lateral accelerations experiences load transfer, dynamically changing the normal load carried by each tire. Conventional braking systems are designed only to work adequately over a large range of conditions, but often ignore the dynamic state of the tire's normal load. Fortunately, new developments in braking system hardware give designers more control over the application of braking pressures. By identifying the tires that carry increased normal load, and biasing the braking system toward those tires, total braking force can be increased. The purpose of this research is to investigate advantages of open-loop load transfer based active brake pressure distribution. By estimating the tractive ability of the tires as a function of measurable vehicle conditions, brake pressure can be applied in proportions appropriate for the current dynamic state of the vehicle, referred to as Active Brake Proportioning (ABP).
Technical Paper

Diesel EGR Fuel Reformer Improvement with Flow Reversal and Central Fueling

2008-06-23
2008-01-1607
Empirical work has been conducted with an EGR fuel reformer configured in a flow reversal and central fueling embedment to improve the fuel dispersion quality and the reforming energy efficiency. Comprehensive comparison analyses are made between the unidirectional flow and the periodic reversal flow embodiments of similar substrate size and properties; and between the inlet and central heating schemes. With a unidirectional EGR reformer, a large amount of supplemental heating is commonly required prior to reforming. The central-fueling and flow-reversal embedment in this study is shown to significantly reduce the supplemental heating energy. The EGR cooler loading for the two strategies is also analyzed. One-dimensional modeling analyses are conducted to evaluate the fuel delivery strategies and temperature profiles of the reformer at various reforming gas flow rates and engine-out exhaust temperatures and compositions.
Technical Paper

Roof Strength Requirement for Vehicles Involved in Rollover Crash

2008-04-14
2008-01-0510
Rollover crash is one of the most serious safety problems for light weight vehicles. In the USA, rollover crashes account for almost one-third of all occupant fatalities in light weight vehicles. Similar statistics are found for other countries. Thus, rollover crashes have received significant attention in recent years. In the USA and Canada, automotive manufacturers are required to comply with the roof strength requirement of “1.5 times the unloaded vehicle weight” to ensure safety in rollover. NHTSA is currently considering a set of countermeasures to improve the rollover safety, where one of the proposals is to increase the roof strength limit to “2.5 times the unloaded vehicle weight”. This increased roof strength limit seemingly has been motivated based on the benchmark study of current vehicle fleet.
Technical Paper

Metrics for Evaluating the Ride Handling Compromise

2010-04-12
2010-01-1139
Though the purpose of a vehicle's suspension is multi-faceted and complex, the fundamentals may be simply stated: the suspension exists to provide the occupants with a tolerable ride, while simultaneously ensuring that the tires maintain good contact with the ground. At the root of the familiar ride/handling compromise, is the problem that tuning efforts which improve either grip or handling are generally to the detriment of the other. This study seeks to set forth a clear means for examining the familiar ride/handing compromise, by first exploring the key ideas of these terms, and then by describing the development of content-rich metrics to permit a direct optimization strategy. For simplicity, the optimization problem was examined in a unilateral manner, where heave (vertical; z-axis) behaviour is examined in isolation, though the methods described herein may be extended to pitch and roll behaviour as well.
Technical Paper

Separation and Liberation Factors in Designing for Automotive Materials Recovery

2004-03-08
2004-01-0471
One critical aspect of design-for-environment efforts is to increase the effectiveness of materials recovery from end-of-life vehicles. Recovery itself depends on both the amount of material recovered and the purity of the material stream. Shredding, and screening are often used to separate recyclable materials from wastes. However, with the increasing amount of composite components, particularly those made from plastics, separation processes may be inadequate. Instead, liberation processes, which reduce the physical joints between materials, are also important. In this research, samples of ABS and PVC plastics were assembled into various configurations, ground up, and then characterized by their size distributions and degrees of liberation. Two primary fastening methods - adhesive and riveting - were used to simulate how plastic components would be actually attached together.
Technical Paper

Uses for Stabilized Aluminum Foam in Crashworthiness and Strengthening Applications

2003-03-03
2003-01-1295
Stabilized Aluminum Foam (SAF) is a material produced by introducing gas bubbles into molten aluminum. Two examples will be used to illustrate the potential use of SAF in energy absorption and structural reinforcement applications. The first is use of SAF in a crashbox to absorb energy in a 15km/hr collision and prevent damage to the rails as part of a front-end energy management system. The second is as a filler in a hollow structure subject to bending loads, which potentially could find application in rails and pillars. By filling a hollow structure with SAF, the bending strength is increased dramatically while the weight increases are not significant. Numerical modeling using LS DYNA gave very good agreement with experimental results.
Technical Paper

Investigating Process Parameters and Microhardness Predictive Modeling Approaches for Single Bead 420 Stainless Steel Laser Cladding

2017-03-28
2017-01-0283
Laser cladding is a novel process of surface coating, and researchers in both academia and industry are developing additive manufacturing solutions for large, metallic components. There are many interlinked process parameters associated with laser cladding, which may have an impact on the resultant microhardness profile throughout the bead zone. A set of single bead laser cladding experiments were done using a 4 kW fiber laser coupled with a 6-axis robotic arm for 420 martensitic stainless steel powder. A design of experiments approach was taken to explore a wide range of process parameter settings. The goal of this research is to determine whether robust predictive models for hardness can be developed, and if there are predictive trends that can be employed to optimize the process settings for a given set of process parameters and microhardness requirements.
Technical Paper

General and Galvanic Corrosion Behavior of Aluminized Ultra-High Strength Steel (UHSS) and Magnesium Alloy AZ35 Altered by Plasma Electrolytic Oxidation Coating Processes

2017-03-28
2017-01-0506
Ultra-high strength steel (UHSS) and magnesium (Mg) alloy have found their importance in response to automotive strategy of light weighting. UHSS to be metal-formed by hot stamping usually has a hot-dipped aluminum-silicon alloy layer on its surface to prevent the high temperature scaling during the hot stamping and corrosion during applications. In this paper, a plasma electrolytic oxidation (PEO) process was used to produce ceramic oxide coatings on aluminized UHSS and Mg with intention to further improve their corrosion resistances. A potentiodynamic polarization corrosion test was employed to evaluate general corrosion properties of the individual alloys. Galvanic corrosion of the aluminized UHSS and magnesium alloy coupling with and without PEO coatings was studied by a zero resistance ammeter (ZRA) test. It was found that the heating-cooling process simulating the hot stamping would reduce anti-corrosion properties of aluminized UHSS due to the outward iron diffusion.
Technical Paper

Wear of D2 Tool Steel Dies during Trimming DP980-type Advanced High Strength Steel (AHSS) for Automotive Parts

2017-03-28
2017-01-1706
Automobile body panels made from advanced high strength steel (AHSS) provide high strength-to-mass ratio and thus AHSS are important for automotive light-weighting strategy. However, in order to increase their use, the significant wear damage that AHSS sheets cause to the trim dies should be reduced. The wear of dies has undesirable consequences including deterioration of trimmed parts' edges. In this research, die wear measurement techniques that consisted of white-light optical interferometry methods supported by large depth-of-field optical microscopy were developed. 1.4 mm-thick DP980-type AHSS sheets were trimmed using dies made from AISI D2 steel. A clearance of 10% of the thickness of the sheets was maintained between the upper and lower dies. The wear of the upper and lower dies was evaluated and material abrasion and chipping were identified as the main damage features at the trim edges.
Technical Paper

Modular Design and Methods to Optimize Seat Complete Assemblies

2017-03-28
2017-01-1309
Modularity in product architecture and its significance in product development have become an important product design topics in the last few decades. Several Product Modularity definitions and methodologies were developed by many researchers; however, most of the definitions and concepts have proliferated to the extent that it is difficult to apply one universal definition for modular product architecture and in product development. Automotive seat modular strategy and key factors for consideration towards modular seat design and assemblies are the main focus of this work. The primary objectives are focused on the most “natural segmentation” of the seat elements (i.e., cushions, backs, trims, plastics, head restraints, etc.) to enable the greatest ease of final assembly and greatest flexibility for scalable feature offerings around common assembly “hard-points.”
Technical Paper

Energy Efficiency Analysis of Active-flow Operations in Diesel Engine Aftertreatment

2006-10-16
2006-01-3286
Experiments are carried out with the diesel particulate filter and oxidation catalyst embedded in the active-flow configurations on a single cylinder diesel engine. The combined use of various active flow control schemes are identified to be capable of shifting the exhaust gas temperature, flow rate, and oxygen concentration to favorable windows for filtration, conversion, and regeneration processes. Empirical and theoretical investigations are performed with a transient one-dimensional single channel aftertreatment model developed in FORTRAN and MATLAB. The influence of the supplemental energy distribution along the length of aftertreatment device is evaluated. The theoretical analysis indicates that the active-flow control schemes have fundamental advantages in optimizing the converter thermal management including reduction in supplemental heating, increase in thermal recuperation, and improving overheating protection.
Technical Paper

In-vehicle Speech Intelligibility for the Hearing Impaired Using Speech Intelligibility Index

2011-05-17
2011-01-1681
Individuals with hearing impairments often report hearing difficulties within the driving environment. This is an ever growing issue given the increasing population of senior aged drivers. In this study, Speech Intelligibility Index (SII) is used to predict in-vehicle speech intelligibility of individuals having common hearing impairments. The effect of hearing threshold levels obtained from audiograms and the impact of vehicle background noise measured for various vehicle operating conditions, road surface types and talker and listener configurations are investigated. This is done by using measured and user-defined speech spectra as described by ANSI S3.5-1997 (Methods for Calculation of the Speech Intelligibility Index). The results demonstrate poor speech intelligibility for most situations considered and provide evidence for the need to improve automotive interior sound quality in terms of speech intelligibility for hearing impaired drivers including aged drivers.
Technical Paper

Empirical and Theoretical Investigations of Active-flow Control on Diesel Engine After-treatment

2006-04-03
2006-01-0465
Empirical and theoretical studies are made between active-flow control and passive-flow control schemes in investigating the influences of gas flow, heat transfer, chemical reaction, oxygen concentration, and substrate properties. The exhaust active-flow control includes the parallel alternating flow, partial restricting flow, periodic flow reversal, and extended flow stagnation that are found to be especially effective to treat engine exhausts that are difficult to cope with conventional passive-flow converters [1, 2]. The tests are set up on a single cylinder Yanmar engine. Theoretical studies are performed with the one-dimensional transient modeling techniques to analyze the thermal behavior of the diesel after-treatment systems when active flow control schemes are applied.
Technical Paper

Boundary Layer Enhanced Thermal Recuperation for Diesel Particulate Filter Regeneration under a Periodic Flow Reversal Operation

2005-04-11
2005-01-0951
Diesel Particulate Filters (DPF) are viable to reduce smoke from diesel engines. An oxidation process is usually required to remove the Particulate Matter (PM) loading from the DPF substrates. In cases when the engine exhaust temperature is insufficient to initiate a thermal regeneration, supplemental energy is commonly applied to raise the exhaust gas and/or the DPF substrate temperatures. A flow reversal (FR) mechanism that traps a high temperature region in the DPF substrate by periodically altering the gas flow directions has been identified to be capable of reducing the supplemental energy and thus to improve the overall thermal efficiency of the engine. However, extended operations with low exhaust temperature lowers the DPF boundary temperatures that defers the regeneration processes. Furthermore, the temperature fluctuations caused by the periodic FR operation also increase the thermal stress in the DPF.
Technical Paper

A Thermal Analysis of Active-flow Control on Diesel Engine Aftertreatment

2004-10-25
2004-01-3020
One-dimensional transient modeling techniques are adapted to analyze the thermal behavior of lean-burn after-treatment systems when active flow control schemes are applied. The active control schemes include parallel alternating flow, partial restricting flow, and periodic flow reversal (FR) that are found to be especially effective to treat engine exhausts that are difficult to cope with conventional passive flow converters. To diesel particulate filters (DPF), lean NOx traps (LNT), and oxidation converters (OC), the combined use of active flow control schemes are identified to be capable of shifting the exhaust gas temperature, flow rate, and oxygen concentration to more favorable windows for the filtration, conversion, and regeneration processes. Comparison analyses are made between active flow control and passive flow control schemes in investigating the influences of gas flow, heat transfer, chemical reaction, oxygen concentration, and converter properties.
Technical Paper

Electrical Insulation Properties of Alumina Coatings on SAE 52100 Bearing Steel

2022-03-29
2022-01-0726
In recent years, bearing electrical failures have been a significant concern in electric cars, restricting electric engine life. This work aims to introduce a coating approach for preventing electrical erosion on 52100 alloy steel samples, the most common material used on manufacturing bearings. This paper discusses the causes of shaft voltage and bearing currents, and summarizes standard electrical bearing failure mechanisms, such as morphological damages and lubrication failures. Alumina coatings are suitable for insulating the 52100 alloy steel samples because alumina coatings provide excellent insulation, hardness, and corrosion resistance, among other characteristics. The common method to coat an insulated alumina coating on the bearing is thermal spraying, but overspray can cause environmental issues, and the coating procedures are costly and time-consuming.
Technical Paper

Observations of the Relative Performance of Magnesium and Aluminum Steering Wheel Skeletons with Identical Geometry

2000-03-06
2000-01-0784
Automotive steering wheels depend on a structural skeleton made of steel, aluminum, or magnesium to be the basis for the mechanical properties of the finished part. The mechanical properties of concern are the fatigue properties and the crash performance. The purpose of this study was to evaluate the crash and the fatigue performance of a steering wheel skeleton fabricated by high pressure die casting. Two materials were used to produce two groups of wheels with identical geometry. The production part was designed, optimized and fabricated with AM50A magnesium. The production magnesium component met all of the regulatory design and performance requirements. A small sample run was made in a proprietary aluminum - magnesium alloy. The fatigue and crash properties were evaluated empirically. In fatigue testing, the aluminum skeletons displayed a significant improvement, with respect to the magnesium skeletons, in the number of cycles to failure at the loads tested.
Technical Paper

A Neural Network Approach for Predicting Collision Severity

2014-04-01
2014-01-0569
The development of a collision severity model can serve as an important tool in understanding the requirements for devising countermeasures to improve occupant safety and traffic safety. Collision type, weather conditions, and driver intoxication are some of the factors that may influence motor vehicle collisions. The objective of this study is to use artificial neural networks (ANNs) to identify the major determinants or contributors to fatal collisions based on various driver, vehicle, and environment characteristics obtained from collision data from Transport Canada. The developed model will have the capability to predict similar collision outcomes based on the variables analyzed in this study. A multilayer perceptron (MLP) neural network model with feed-forward back-propagation architecture is used to develop a generalized model for predicting collision severity. The model output, collision severity, is divided into three categories - fatal, injury, and property damage only.
X