Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Design and Construction of a High-Bandwidth Hydrostatic Dynamometer

1993-03-01
930259
A hydrostatic dynamometer capable of accurately controlling the speed and torque of an engine has been designed and constructed. The thrust of this work is not only to build a better dynamometer, it is the first step in creating a system for laboratory simulation of the actual load environment of engines and powertrains. This paper presents the design, construction, and evaluation of a hydrostatic dynamometer. The evaluation includes speed and torque limits, and bandwidth of the dynamometer. Also, the dynamometer is compared with those in common use, and the feasibility of accurately reproducing the engine or powertrain load environments are assessed. This is the first phase of a development program; future research is discussed.
Technical Paper

Hardware Implementation Details and Test Results for a High-Bandwith, Hydrostatic Transient Engine Dynamometer System

1997-02-24
970025
Transient operation of automobile engines is known to contribute significantly to regulated exhaust emissions, and is also an area of drivability concerns. Furthermore, many on-board diagnostic algorithms do not perform well during transient operation and are often temporarily disabled to avoid problems. The inability to quickly and repeatedly test engines during transient conditions in a laboratory setting limits researchers and development engineers ability to produce more effective and robust algorithms to lower vehicle emissions. To meet this need, members of the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison have developed a high-bandwidth, hydrostatic dynamometer system that will enable researchers to explore transient characteristics of engines and powertrains in the laboratory.
Technical Paper

Using Dynamic Modular Diesel Engine Models To Understand System Interactions and Performance

1999-03-01
1999-01-0976
This paper reviews the engine modeling program in the Powertrain Control Research Laboratory at the University of Wisconsin-Madison, focuses on simulation results obtained from a complete modular turbocharged diesel engine dynamic model developed in this lab, and suggests ways that dynamic engine system models can be used in the design process. It examines the dynamic responses and interactions between various components in the engine system, looks at how these components affect the overall performance of the system in transient and steady state operation.
X