Refine Your Search

Search Results

Journal Article

Active Learning Optimization for Boundary Identification Using Machine Learning-Assisted Method

2022-03-29
2022-01-0783
Identifying edge cases for designed algorithms is critical for functional safety in autonomous driving deployment. In order to find the feasible boundary of designed algorithms, simulations are heavily used. However, simulations for autonomous driving validation are expensive due to the requirement of visual rendering, physical simulation, and AI agents. In this case, common sampling techniques, such as Monte Carlo Sampling, become computationally expensive due to their sample inefficiency. To improve sample efficiency and minimize the number of simulations, we propose a tailored active learning approach combining the Support Vector Machine (SVM) and the Gaussian Process Regressor (GPR). The SVM learns the feasible boundary iteratively with a new sampling point via active learning. Active Learning is achieved by using the information of the decision boundary of the current SVM and the uncertainty metric calculated by the GPR.
X