Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Vision Performance Measures for Optimization-Based Posture Prediction

2006-07-04
2006-01-2334
Although much work has been completed with modeling head-neck movements as well with studying the intricacies of vision and eye movements, relatively little research has been conducted involving how vision affects human upper-body posture. By leveraging direct human optimized posture prediction (D-HOPP), we are able to predict postures that incorporate one's tendency to actually look towards a workspace or see a target. D-HOPP is an optimization-based approach that functions in real time with Santos™, a new kind of virtual human with a high number of degrees-of-freedom and a highly realistic appearance. With this approach, human performance measures provide objective functions in an optimization problem that is solved just once for a given posture or task. We have developed two new performance measures: visual acuity and visual displacement.
Journal Article

Studying Visibility as a Constraint and as an Objective for Posture Prediction

2008-06-17
2008-01-1875
Using optimization to predict human posture provides a unique means of studying how and why people move. In a formulation where joint angles are determined in order to minimize a human performance measure subject to various constraints, the general question of when to model components as objective functions and when to model them as constraints has not been addressed thoroughly. We suggest that human performance measures, which act as objective functions, model what drives human posture, whereas constraints provide boundary conditions that restrict the scope of the model. This applied research study tests this hypothesis and concurrently evaluates how vision affects the prediction and assessment of upper-body posture. Single-objective and multi-objective optimization formulations for posture prediction are used with a 35 degree-of-freedom upper-body model of a virtual human called SantosTM.
X