Refine Your Search

Topic

Author

Search Results

Journal Article

Field Evaluation of Biodiesel (B20) Use by Transit Buses

2009-10-06
2009-01-2899
The objective of this research project was to compare B20 (20% biodiesel fuel) and ultra-low-sulfur (ULSD) diesel-fueled buses in terms of fuel economy, vehicle maintenance, engine performance, component wear, and lube oil performance. We examined 15 model year (MY) 2002 Gillig 40-foot transit buses equipped with MY 2002 Cummins ISM engines. The engines met 2004 U.S. emission standards and employed exhaust gas recirculation (EGR). For 18 months, eight of these buses operated exclusively on B20 and seven operated exclusively on ULSD. The B20 and ULSD study groups operated from different depots of the St. Louis (Missouri) Metro, with bus routes matched for duty cycle parity. The B20- and ULSD-fueled buses exhibited comparable fuel economy, reliability (as measured by miles between road calls), and total maintenance costs. Engine and fuel system maintenance costs were also the same for the two groups after correcting for the higher average mileage of the B20 group.
Journal Article

Review: Fuel Volatility Standards and Spark-Ignition Vehicle Driveability

2016-03-14
2016-01-9072
Spark-ignition engine fuel standards have been put in place to ensure acceptable hot and cold weather driveability (HWD and CWD). Vehicle manufacturers and fuel suppliers have developed systems that meet our driveability requirements so effectively that drivers overwhelmingly find that their vehicles reliably start up and operate smoothly and consistently throughout the year. For HWD, fuels that are too volatile perform more poorly than those that are less volatile. Vapor lock is the apparent cause of poor HWD, but there is conflicting evidence in the literature as to where in the fuel system it occurs. Most studies have found a correlation between degraded driveability and higher dry vapor pressure equivalent or lower TV/L = 20, and less consistently with a minimum T50. For CWD, fuels with inadequate volatility can cause difficulty in starting and rough operation during engine warmup.
Journal Article

Effects of Biodiesel Operation on Light-Duty Tier 2 Engine and Emission Control Systems

2008-04-14
2008-01-0080
Due to raising interest in diesel powered passenger cars in the U.S. in combination with a desire to reduce dependency on imported petroleum, there has been increased attention to the operation of diesel vehicles on fuels blended with biodiesel. One of several factors to be considered when operating a vehicle on biodiesel blends is understanding the impact and performance of the fuel on the emission control system. This paper documents the impact of the biodiesel blends on engine-out emissions as well as the overall system performance in terms of emission control system calibration and the overall system efficiency. The testing platform is a light-duty HSDI diesel engine with a Euro 4 base calibration in a 1700 kg sedan vehicle. It employs 2nd generation common-rail injection system with peak pressure of 1600 bar as well as cooled high-pressure EGR. The study includes 3 different fuels (U.S.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

Strategies for Meeting Phase 2 GHG and Ultra-Low NOx Emission Standards for Heavy-Duty Diesel Engines

2018-04-03
2018-01-1429
When considered along with Phase 2 Greenhouse Gas (GHG) requirements, the proposed Air Resource Board (ARB) nitrogen oxide (NOx) emission limit of 0.02 g/bhp-hr will be very challenging to achieve as the trade-off between fuel consumption and NOx emissions is not favorable. To meet any future ultra-low NOx emission regulation, the NOx conversion efficiency during the cold start of the emission test cycles needs to be improved. In such a scenario, apart from changes in aftertreatment layout and formulation, additional heating measures will be required. In this article, a physics-based model for an advanced aftertreatment system comprising of a diesel oxidation catalyst (DOC), an SCR-catalyzed diesel particulate filter (SDPF), a stand-alone selective catalytic reduction (SCR), and an ammonia slip catalyst (ASC) was calibrated against experimental data.
Technical Paper

Catalyst Aging Method for Future Emissions Standard Requirements

2010-04-12
2010-01-1272
This paper describes an alternative catalyst aging process using a hot gas test stand for thermal aging. The solution presented is characterized by a burner technology that is combined with a combustion enhancement, which allows stoichiometric and rich operating conditions to simulate engine exhaust gases. The resulting efficiency was increased and the operation limits were broadened, compared to combustion engines that are typically used for catalyst aging. The primary modification that enabled this achievement was the recirculation of exhaust gas downstream from catalyst back to the burner. The burner allows the running simplified dynamic durability cycles, which are the standard bench cycle that is defined by the legislation as alternative aging procedure and the fuel shut-off simulation cycle ZDAKW. The hot gas test stand approach has been compared to the conventional engine test bench method.
Technical Paper

Achieving Tier 2 Bin 5 Emission Levels with a Medium Duty Diesel Pick-Up and a NOX Adsorber, Diesel Particulate Filter Emissions System-Exhaust Gas Temperature Management

2004-03-08
2004-01-0584
Increasing fuel costs and the desire for reduced dependence on foreign oil has brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. The main obstacle to the increased use of diesel engines in this platform is the upcoming extremely stringent, Tier 2 emission standard. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies such as common rail fuel injection systems, low sulfur diesel fuel, NOX adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with these future requirements. In meeting the Tier 2 emissions standards, the heavy light-duty trucks (HLDTs) and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. In support of this, the U.S.
Technical Paper

Achieving Tier 2 Bin 5 Emission Levels with a Medium Duty Diesel Pick-Up and a NOX Adsorber, Diesel Particulate Filter Emissions System - NOX Adsorber Management

2004-03-08
2004-01-0585
Increasing fuel costs and the desire for reduced dependence on foreign oil has brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. The main obstacle to the increased use of diesel engines in this platform is the upcoming extremely stringent, Tier 2 emission standard. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies such as common rail fuel injection systems, low sulfur diesel fuel, NOX adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with these future requirements. In meeting the Tier 2 emissions standards, the heavy light-duty trucks (HLDTs) and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. In support of this, the U.S.
Technical Paper

Design Review a Tool for Product Development Quality Assurance

2003-11-18
2003-01-3670
Same of the more enticing and productive opportunities to a useful work in product assurance are those of influencing the design of a product. The primary concern of design assurance is preventing or correcting those design errors that lead to poor product integrity. One of the tools used by the development teams in many organizations is the Design Review. The impact in cost and quality is directly affected by the correct utilization of the tool.
Technical Paper

An Overview of Hardware-In-the-Loop Testing Systems at Visteon

2004-03-08
2004-01-1240
This paper discusses our experiences on the implementation and benefits of using the Hardware-In-the-Loop (HIL) systems for Powertrain control system software verification and validation. The Visteon HIL system integrated with several off-the-shelf diagnostics and calibration tools is briefly explained. Further, discussions on test automation sequence control and failure insertion are outlined The capabilities and advantages of using HIL for unit level software testing, open loop and closed-loop system testing, fault insertion and test automation are described. HIL also facilitates Software and Hardware Interface validation testing with low-level driver and platform software. This paper attempts to show the experiences with and capabilities of these HIL systems.
Technical Paper

Stability Control of Combination Vehicle

2001-03-05
2001-01-0138
This paper discusses the development of combination vehicle stability program (CVSP) at Visteon. It will describe why stability control is needed for combination vehicles and how the vehicle stability can be improved. We propose and evaluate controller structures and design methods for CVSP. These include driver's intent identification, combination vehicle status estimation and control, and fault detection / tolerance. In this paper, the braking and steering dynamics of car-trailer and tractor-semitrailer combinations, and the brake systems which should be used extensively to increase the stability of combination vehicles are presented. Also our development platform is introduced and the combination vehicle simulation results are presented. The definition of combination vehicles in this paper includes car-trailer and commercial tractor-semitrailer combinations since their vehicle dynamics are based on the same equations of motion.
Technical Paper

Design and Transient Simulation of Vehicle Air Conditioning Systems

2001-05-14
2001-01-1692
This paper describes the need for dynamic (transient) simulation of automotive air conditioning systems, the reasons why such simulations are challenging, and the applicability of a general purpose off-the-shelf thermohydraulic analyzer to answer such challenges. An overview of modeling methods for the basic components are presented, along with relevant approximations and their effect on speed and accuracy of the results.
Technical Paper

Development of Truck Engine Technologies for Use with Fischer-Tropsch Fuels

2001-09-24
2001-01-3520
The Fischer-Tropsch (FT) process can be used to synthesize diesel fuels from a variety of energy sources, including coal, natural gas and biomass. Diesel fuels produced from the FT process are essentially sulfur-free, have very low aromatic content, and have excellent ignition characteristics. Because of these favorable attributes, FT diesel fuels may offer environmental benefits over transportation fuels derived from crude oil. Previous tests have shown that FT diesel fuel can be used in unmodified engines and have been shown to lower regulated emissions. Whereas exhaust emissions reductions from these previous studies have been impressive, this paper demonstrates that far greater exhaust emissions reductions are possible if the diesel engine is optimized to exploit the properties of the FT fuels. A Power Stroke 7.3 liter turbocharged diesel engine has been modified for use with FT diesel.
Technical Paper

Fuel Used for Vehicle Air Conditioning: A State-by-State Thermal Comfort-Based Approach

2002-06-03
2002-01-1957
How much fuel does vehicle air conditioning actually use? This study attempts to answer that question to determine the national and state-by-state fuel use impact seen by using air conditioning in light duty gasoline vehicles. The study used data from US cities, representative of averages over the past 30 years, whose temperature, incident radiation, and humidity varied through time of day and day of year. National surveys estimated when people drive their vehicles during the day and throughout the year. A simple thermal comfort model based on Fanger's heat balance equations determined the percentage of time that a driver would use the air conditioning based on the premise that if a person were dissatisfied with the thermal environment, they would turn on the air conditioning. Vehicle simulations for typical US cars and trucks determined the fuel economy reduction seen with AC use.
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
Technical Paper

Accelerated Useful Life Testing and Field Correlation Methods

2002-03-04
2002-01-1175
The purpose of this paper is to present a common sense practical method for establishing and demonstrating reliability objectives. In particular, this paper will: describe an operational definition of “useful life”, describe an accelerated laboratory test procedure for demonstrating that products meet the useful life objective, and describe a method for demonstrating correlation between customer usage and laboratory testing.
Technical Paper

Fischer-Tropsch Diesel Fuels - Properties and Exhaust Emissions: A Literature Review

2003-03-03
2003-01-0763
Natural gas, coal, and biomass can be converted to diesel fuel through Fischer-Tropsch (F-T) processes. Variations of the F-T process and/or product work-up can be used to tailor the fuel properties to meet end-users needs. Regardless of feedstock or process, F-T diesel fuels typically have a number of very desirable properties. This review describes typical F-T diesel fuel properties, discusses how these fuel properties impact pollutant emissions, and draws together data from known engine and chassis dynamometer studies of emissions. The comparison of fuel properties reveals that F-T diesel fuel is typically one of two types - a very high cetane number (>74), zero aromatic product or a moderate cetane (∼60), low aromatic (≤15%) product. The very high cetane fuels typically have less desirable low temperature properties while the moderate cetane fuels have cold flow properties more typical of conventional diesel fuels.
Technical Paper

Statistical Design and Analysis Methods for Evaluating the Effects of Lubricant Formulations on Diesel Engine Emissions

2003-05-19
2003-01-2022
The Advanced Petroleum-Based Fuels - Diesel Emissions Control (APBF-DEC) project is a joint U.S. government/industry research effort to identify optimal combinations of fuels, lubricants, engines, and emission control systems to meet projected emissions regulations during the period 2000 to 2010. APBF-DEC is conducting five separate projects involving light- and heavy-duty engine platforms. Four projects are focusing on the performance of emission control technologies for reducing criteria emissions using different fuels. This project is investigating the effects of lubricant formulation on engine-out emissions (Phase I) and the resulting impact on emission control systems (Phase II). This paper describes the statistical design and analysis methods used during Phase I of the lubricants project.
Technical Paper

Optimizing Valve Rotational Speed Using Taguchi Techniques

2010-04-12
2010-01-1096
As fuel economy regulations increase and customer preference shifts to smaller, higher power density engines it is more important to effectively cool certain areas of the cylinder head and valvetrain. In order to maximize valvetrain life and increase engine performance it is critical to maintain a near uniform valve seat temperature to enable proper sealing. As cylinder head bridges narrow, and the temperature increases, the water jacket may not be sufficient. An alternative method to ensuring equal temperature distribution across the valve is to promote low speed valve rotation. This will not only aid, cooling the valve seat, as well as cooling and cleaning the valves' seating surface. This paper describes the development and testing of a valve rotation study, utilizing the Taguchi approach in order to determine the most robust design. A test stand was utilized to examine the valve rotation in which the cam was driven directly using a DC motor.
Technical Paper

NVH Target Cascading from Customer Interface to Vehicle Subsystems

2013-05-13
2013-01-1980
The definition of vehicle and powertrain level targets is one of the first tasks toward establishing where a vehicle will reside with respect to the current or future state of industry. Though development of sound quality metrics is ongoing to better correlate objective data with subjective assessments, target setting at the vehicle level is relatively straightforward. However, realization of these targets depends on effective cascading to system and component levels. Often, component level targets are derived based on experience from earlier development programs, or based on selected characteristics observed during component level benchmarking. An approach is presented here to complement current strategies for component level target definition. This approach involves a systematic concept for definition of component NVH targets based on desired vehicle level performance and a consequent target break down.
X