Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

LES Multi-Cycle Analysis of the Combustion Process in a Small SI Engine

2014-04-01
2014-01-1138
Large eddy simulations (LES) of a port-injected 4-valve spark ignited (SI) engine have been carried out with the emphasis on the combustion process. The considered operating point is close to full load at 3,500 RPM and exhibits considerable cyclic variation in terms of the in-cylinder pressure traces, which can be related to fluctuations in the combustion process. In order to characterize these fluctuations, a statistically relevant number of subsequent cycles, namely up to 40, have been computed in the multi-cycle analysis. In contrast to other LES studies of SI engines, here the G-equation (a level set approach) has been adopted to model the premixed combustion in the framework of the STAR-CD/es-ICE flow field solver. Tuning parameters are identified and their impact on the result is addressed.
Journal Article

Knock in an Ethanol Fueled Spark Ignition Engine: Detection Methods with Cycle-Statistical Analysis and Predictions Using Different Auto-Ignition Models

2014-04-01
2014-01-1215
Knock is studied in a single cylinder direct injection spark ignition engine with variable intake temperatures at wide open throttle and stoichiometric premixed ethanol-air mixtures. At different speeds and intake temperatures spark angle sweeps have been performed at non-knocking conditions and varying knock intensities. Heat release rates and two zone temperatures are computed for both the mean and single cycle data. The in-cylinder pressure traces are analyzed during knocking combustion and have led to a definition of knocking conditions both for every single cycle as well as the mean engine cycle of a single operating point. The timing for the onset of knock as a function of degree crank angle and the mass fraction burned is determined using the “knocking” heat release and the pressure oscillations typical for knocking combustion.
X