Refine Your Search

Topic

Author

Search Results

Journal Article

Coking Phenomena in Nozzle Orifices of Dl-Diesel Engines

2009-04-20
2009-01-0837
Within a public founded project test cell investigations were undertaken to identify parameters which predominantly influence the development of critical deposits in injection nozzles. A medium-duty diesel engine was operated in two different coking cycles with a zinc-free lubricant. One of the cycles is dominated by rated power, while the second includes a wide area of the operation range. During the experiments the temperatures at the nozzle tip, the geometries of the nozzle orifice and fuel properties were varied. For a detailed analysis of the deposits methods of electron microscopy were deployed. In the course of the project optical access to all areas in the nozzle was achieved. The experiments were evaluated by means of the monitoring of power output and fuel flow at rated power. The usage of a SEM (scanning electron microscope) and a TEM (transmission electron microscope) revealed images of the deposits with a magnification of up to 160 000.
Journal Article

In-Cylinder LIF Imaging, IR-Absorption Point Measurements, and a CFD Simulation to Evaluate Mixture Formation in a CNG-Fueled Engine

2018-04-03
2018-01-0633
Two optical techniques were developed and combined with a CFD simulation to obtain spatio-temporally resolved information on air/fuel mixing in the cylinder of a methane-fueled, fired, optically accessible engine. Laser-induced fluorescence (LIF) of anisole (methoxybenzene), vaporized in trace amounts into the gaseous fuel upstream of the injector, was captured by a two-camera system, providing one instantaneous image of the air/fuel ratio per cycle. Broadband infrared (IR) absorption by the methane fuel itself was measured in a small probe volume via a spark-plug integrated sensor, yielding time-resolved quasi-point information at kHz-rates. The simulation was based on the Reynolds-averaged Navier-Stokes (RANS) approach with the two-equation k-epsilon turbulence model in a finite volume discretization scheme and included the port-fuel injection event. Commercial CFD software was used to perform engine simulations close to the experimental conditions.
Technical Paper

Active Noise Cancellation at Powertrain Oil Pan

2007-05-15
2007-01-2422
Under city driving conditions, the powertrain represents one of the major vehicle exterior noise sources. Especially at idle and during full load acceleration, the oil pan contributes significantly to the overall powertrain sound emission. The engine oilpan can be a significant contributor to the powertrain radiated sound levels. Passive optimization measures, such as structural optimization and acoustic shielding, can be limited by e.g. light-weight design, package and thermal constraints. Therefore, the potential of the Active Structure Acoustic Control (ASAC) method for noise reduction was investigated within the EU-sponsored project InMAR. The method has proven to have significant noise reduction potential with respect to oil pan vibration induced noise. The paper reports on activities within the InMAR project with regard to a passenger car oil pan application of an ASAC system based on piezo-ceramic foil technology.
Technical Paper

The Volkswagen Electric Drive Vehicle: Objectives and Technology

1998-10-19
98C056
In addition to the price factor, the success of an electric vehicle primarily depends on its performance characteristics and operating range. Advances both in vehicle design and better technology help to improve these characteristics, thus providing the customer with a convincing vehicle concept. Three vehicle generations will be examined and the development advances between 1993 and 2003 will be listed by way of comparison. Improvement potential and technical limits will be analyzed from cost aspects. Since the limits of battery technology cannot be extended at will, it is necessary to develop both battery-driven electric vehicles and vehicles fitted with hybrid drive units. Based on the drive technology of purely electric-powered vehicles, concepts of range extender hybrid and fuel-cell hybrid vehicles will be presented.
Technical Paper

Vehicle Infotronics-The Driver Assistant Approach

1998-10-19
98C024
A new approach to improve the driver's safety is to actively support the driving task and prevent possibly dangerous situations. This paper is about the family of driver assistance systems which will combine three steps of information processing: Automatic collection of data by scanning the environment of the vehicle; Automatic processing of data according to the need of the driver and his driving task; Appropriate presentation of valuable information to the driver. Electronic sensor systems will enlarge the driver's knowledge about what is actually going on around his vehicle. These systems expand the human sensor systems eye and ear for the special purpose "safe driving."
Technical Paper

Study cases using the method of Statistical Energy Analyse SEA for airborne sound transmission in a vehicle body

2008-03-30
2008-36-0567
The acoustics insulation on the car body is ones of the more important target in the NVH (Noise Vibration and Harshness) vehicle development process. The method of SEA is a validated statistical approach to solve airborne noise transmission problems. In the vehicle analysis above 300 Hz where material trim and leakage paths makes a important contribution in the vehicle interior acoustics shows the methodology its advantages over deterministic methods.
Technical Paper

Application of Combustion Sound Level (CSL) Analysis for Powertrain

2009-05-19
2009-01-2168
Powertrain noise is a significant factor in determination of the overall vehicle refinement expected by today's discriminating automotive customer. Development of a powertrain to meet these expectations requires a thorough understanding of the contributing noise sources. Specifically, combustion noise greatly impacts the perception of sound levels and quality. The relevance of combustion noise development has increased with the advent of newer efficiency-driven technologies such as direct injection or homogeneous charge compression ignition. This paper discusses the application of a CSL (Combustion Sound Level) analysis-a method for the identification and optimization of combustion noise. Using CSL, it is possible to separate mechanical and combustion noise sources.
Technical Paper

Complex Air Path Management Systems and Necessary Controller Structures for Future High Dynamic Requirements

2009-05-13
2009-01-1616
The future worldwide emission regulations will request a drastic decrease of Diesel engine tailpipe emissions. Depending on the planned application and the real official regulations, a further strong decrease of engine out emissions is necessary, even though the utilized exhaust after-treatment systems are very powerful. To reduce NOx emissions internally, the external exhaust gas recirculation (EGR) is known as the most effective way. Due to the continuously increasing requirements regarding specific power, dynamic behavior and low emissions, future air path systems have to fulfill higher requirements and, consequently, become more and more complex, e.g. arrangements with a 2-stage turbo charging or 2-stage EGR system with different stages of cooling performance.
Technical Paper

Application of Detached-Eddy Simulation for Automotive Aerodynamics Development

2009-04-20
2009-01-0333
This paper presents a complete methodology for performing finite-volume-based detached-eddy simulation for the prediction of aerodynamic forces and detailed flow structures of passenger vehicles developed using the open-source CFD toolbox OpenFOAM®. The main components of the methodology consist of an automatic mesh generator, a setup and initialisation utility, a DES flow solver and analysis and post-processing routines. Validation of the predictions is done on the basis of detailed comparisons to experimental wind-tunnel data. Results for lift and drag are found to compare favourably to the experiments, with some moderate discrepancies in predicted rear lift. Point surface-pressure measurements, oil-streak images and maps of total pressure in the flow field demonstrate the approach's capabilities to predict the fine detail of complex flow regimes found in automotive aerodynamics.
Technical Paper

Acoustics of Hybrid Vehicles

2010-06-09
2010-01-1402
The technology used in hybrid vehicle concepts is significantly different from conventional vehicle technology with consequences also for the noise and vibration behavior. In conventional vehicles, certain noise phenomena are masked by the engine noise. In situations where the combustion engine is turned off in hybrid vehicle concepts, these noise components can become dominant and annoying. In hybrid concepts, the driving condition is often decoupled from the operation state of the combustion engine, which leads to unusual and unexpected acoustical behavior. New acoustic phenomena such as magnetic noise due to recuperation occur, caused by new components and driving conditions. The analysis of this recuperation noise by means of interior noise simulation shows, that it is not only induced by the powertrain radiation but also by the noise path via the powertrain mounts. The additional degrees of freedom of the hybrid drive train can also be used to improve the vibrational behavior.
Technical Paper

A Comparison of Different Methods for Battery and Supercapacitor Modeling

2003-06-23
2003-01-2290
In future vehicles (e.g. fuel cell vehicles, hybrid electric vehicles), the electrical system will have an important impact on the mechanical systems in the car (e.g. powertrain, steering). Furthermore, this coupling will become increasingly important over time. In order to develop effective designs and appropriate control systems for these systems, it is important that the plant models capture the detailed physical behavior in the system. This paper will describe models of two electrical components, a battery and a supercapacitor, which have been modeled in two ways: (i) modeling the plant and controller using block diagrams in Simulink and (ii) modeling the plant and controller in Dymola followed by compiling this model to an S-function for simulation in Simulink. Both the battery and supercapacitor model are based on impedance spectroscopy measurements and can be used for highly dynamic simulations.
Technical Paper

High Temperature Mg Alloys for Sand and Permanent Mold Casting Applications

2004-03-08
2004-01-0656
The need to reduce weight of large and heavy components used by the automotive and aerospace industries such as engine block, cylinder head cover and helicopter gearbox housing has led to the development of new Mg gravity casting alloys that provide adequate properties and cost effective solution. The new Mg gravity casting alloys are designed for high stressed components that operate at a temperature up to 300°C. These new alloys exhibit excellent mechanical properties and creep resistance in T-6 conditions. The present paper aims at introducing three new Mg gravity casting alloys designated MRI 201S, MRI 202S and MRI 203S, which were recently developed by the Magnesium Research Institute of DSM and VW. Apart from the excellent high temperature performance of these alloys, they provide adequate castability and dimension stability along with good weldability and corrosion resistance.
Technical Paper

Investigation of Predictive Models for Application in Engine Cold-Start Behavior

2004-03-08
2004-01-0994
The modern engine development process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust after-treatment and emission testing is becoming increasingly more sophisticated. It is expected that predictive simulation tools that encompass the entire powertrain can potentially improve the efficiency of the calibration process. The testing of an ECU using a HiL system requires a real-time model. Additionally, if the initial parameters of the ECU are to be defined and tested, the model has to be more accurate than is typical for ECU functional testing. It is possible to enhance the generalization capability of the simulation, with neuronal network sub-models embedded into the architecture of a physical model, while still maintaining real-time execution. This paper emphasizes the experimental investigation and physical modeling of the port fuel injected SI engine.
Technical Paper

Low Emission Concept for SULEV

2001-03-05
2001-01-1313
Today, SULEV legislation represents the most stringent emission standard for vehicles with combustion engines, and it will be introduced starting by Model Year 2003. In order to meet such standards, even higher effort is required for the development of the exhaust gas emission concept of SI engines. Beyond a facelift of the combustion system, exhaust gas aftertreatment, and the engine management system, new approaches are striven for. The principle keys are well known: low HC feed gas, high thermal load for quick light-off, exhaust system with low heat capacity and highly effective exhaust gas aftertreatment.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

From Adaptive Cruise Control to Active Safety Systems

2001-10-01
2001-01-3245
Once the adaptive cruise control systems are already in the market in Japan and Europe, the evolution of these comfort systems is logically going towards implementing new additional functions and safety strategies in order to detect and actuate in case of emergency. This transition has to be done in clear and precise steps to assure an easy adaptation to each improvement. Driver assistance systems will play a major role in the future to minimise the risk and consequences of accidents and to increase the driving comfort level. The impact of such systems on traffic and society is briefly commented. This paper discusses the need of new driver assistance systems and a possible roadmap for them. After a short introduction of present Adaptive Cruise Control (ACC), and based on them, next possible functions are described.
Technical Paper

A New TEHD Approach for Sophisticated Simulation of Journal Bearings

2001-10-01
2001-01-3367
The new Thermo-Elasto-Hydro-Dynamic (TEHD) code developed by FEV, is designed to improve the predictability of journal bearing designs and thereby increase the reliability of safety factors in the development of highly loaded internal combustion engines. Advanced analysis tools are evaluated by their performance as well as by their ease of use. High performance means on the one hand: taking into account all the important characteristics, like bearing elasticity or cavitation effects, to mention only some major parameters for modern journal bearing analysis. On the other hand: an economic run-time behavior must be a key feature concerning usability of the TEHD-demands for daily development praxis. Ease of use means also, that the TEHD model can easily be used as a plug-in routine of an already existing software package that is well known to the development departments.
Technical Paper

A New Approach to Boost Pressure and EGR Rate Control Development for HD Truck Engines with VGT

2002-03-04
2002-01-0964
Future HD Diesel engine technology is facing a combination of both extremely low exhaust emission standards (US 2002/2004, EURO IV and later US 2007, EURO V) and new engine test procedures such as the European Transient Cycle (ETC) in Europe and the Not-to-Exceed Area (NTE) in the US). Customers furthermore require increased engine performance, improved efficiency, and long-term durability. In order to achieve all targets simultaneously, future HD Diesel engines must have improved fuel injection and combustion systems and utilize suitable technologies such as exhaust gas recirculation (EGR), variable geometry turbine turbocharger systems (VGT) and exhaust gas after-treatment systems. Future systems require precision controlled EGR in combination with a VGT-turbocharger during transient operation. This will require new strategies and calibration for the Electronic Engine Control Unit (ECU).
Technical Paper

Start-Up Behavior of Fuel Processors for PEM Fuel Cell Applications

2003-03-03
2003-01-0420
This paper focuses on start-up technology for fuel processing systems with special emphasis on gasoline fueled burners. Initially two different fuel processing systems, an autothermal reformer with preferential oxidation and a steam reformer with membrane, are introduced and their possible starting strategies are discussed. Energy consumption for preheating up to light-off temperature and the start-up time is estimated. Subsequently electrical preheating is compared with start-up burners and the different types of heat generation are rated with respect to the requirements on start-up systems. Preheating power for fuel cell propulsion systems necessarily reaches up to the magnitude of the electrical fuel cell power output. A gasoline fueled burner with thermal combustion has been build-up, which covers the required preheating power.
Technical Paper

Sound Quality and Engine Performance Development Utilizing Air-to-Air Simulation and Interior Noise Synthesis

2003-05-05
2003-01-1652
The sound quality and performance of an automotive engine are both significantly influenced by the “air-to-air” system, i.e., the intake system, the exhaust system, and the engine gas dynamics. Only a full systems approach can result in an optimized air-to-air system, which fulfills engine performance requirements, overall sound pressure level targets for airborne vehicle noise, as well as sound quality demands. This paper describes an approach, which considers the intake system, engine, and exhaust system within one CAE model that can be utilized for engine performance calculations as well as acoustic simulations. Examples comparing simulated and measured sound are discussed. Finally, the simulated sound (e.g., at the tailpipe of the exhaust system) is combined with an interior noise simulation technique to evaluate its influence inside the vehicle's interior.
X