Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Interaction between Fuel Jets and Prevailing Combustion During Closely-Coupled Injections in an Optical LD Diesel Engine

2019-04-02
2019-01-0551
Two imaging techniques are used to investigate the interaction between developed combustion from earlier injections and partially oxidized fuel (POF) of a subsequent injection. The latter is visualized by using planar laser induced fluorescence (PLIF) of formaldehyde and poly-cyclic aromatic hydrocarbons. High speed imaging captures the natural luminescence (NL) of the prevailing combustion. Three different fuel injection strategies are studied. One strategy consists of two pilot injections, with modest separations after each, followed by single main and post injections. Both of the other two strategies have three pilots followed by single main and post injections. The separations after the second and third pilots are several times shorter than in the reference case (making them closely-coupled). The closely-coupled cases have more linear heat release rates (HRR) which lead to much lower combustion noise levels.
Technical Paper

Demonstration of Two-Dimensional Temperature Characterization of Valves and Transparent Piston in a GDI Optical Engine

2004-03-08
2004-01-0609
Thermographic phosphors thermometry was used to measure engine valves and transparent piston temperatures in two dimensions as well point wise of a running, optically accessible, gasoline direct injection engine. The engine, fueled with isooctane, was operated in continuous and skip-fire mode at 1200 and 2000 rpm. A calibration of the phosphorescence lifetime and spectral properties against temperature allowed temperature measurements between 25 and 600°C. Results from the measurements show the potential of the technique for two-dimensional mapping of engine walls, valves and piston temperatures inside the cylinder.
X