Refine Your Search

Topic

Author

Search Results

Technical Paper

A Strategy for Developing an Inclusive Load Case for Verification of Squeak and Rattle Noises in the Car Cabin

2021-08-31
2021-01-1088
Squeak and rattle (S&R) are nonstationary annoying and unwanted noises in the car cabin that result in considerable warranty costs for car manufacturers. Introduction of cars with remarkably lower background noises and the recent emphasis on electrification and autonomous driving further stress the need for producing squeak- and rattle-free cars. Automotive manufacturers use several road disturbances for physical evaluation and verification of S&R. The excitation signals collected from these road profiles are also employed in subsystem shaker rigs and virtual simulations that are gradually replacing physical complete vehicle test and verification. Considering the need for a shorter lead time and the introduction of optimisation loops, it is necessary to have efficient and inclusive excitation load cases for robust S&R evaluation.
Journal Article

Semi-Empirical CFD Transient Simulation of Engine Air Filtration Systems

2016-04-05
2016-01-1368
To improve fuel efficiency and facilitate handling of the vehicle in a dense city environment, it should be as small as possible given its intended application. This downsizing trend impacts the size of the engine bay, where the air filter box has to be packed in a reduced space, still without increased pressure drop, reduced load capacity nor lower filtering efficiency. Due to its flexibility and reduced cost, CFD simulations play an important role in the optimization process of the filter design. Even though the air-flow through the filter box changes as the dust load increases, the current modeling framework seldom account for such time dependence. Volvo Car Corporation presents an industrial affordable model to solve the time-dependent dust load on filter elements and calculate the corresponding flow behavior over the life time of the air filter box.
Technical Paper

Novel Modelling Techniques of the Evolution of the Brake Friction in Disc Brakes for Automotive Applications

2020-10-05
2020-01-1621
The aim of the presented research is to propose and benchmark two brake models, namely the novel dynamic ILVO (Ilmenau-Volvo) model and a neural-network based regression. These can estimate the evolution of the brake friction between pad and disc under different load conditions, which are typically experienced in vehicle applications. The research also aims improving the knowledge of the underlying mechanism related to the evolution of the BLFC (boundary layer friction coefficient), the reliability of virtual environment simulations to speed up the product development time and reducing the amount of vehicle test in later phases and finally improving brake control functions. With the support of extensive brake dynamometer testing, the proposed models are benchmarked against State-of-the-Art. Both approaches are parametrized to render the friction coefficient dynamics with respect to the same input parameters.
Technical Paper

An Investigation of the Coupling Between the Passenger Compartment and the Trunk in a Sedan

2007-05-15
2007-01-2356
The low frequency acoustic response of the passenger compartment (cavity) in sedans is considered with respect to the coupling between the cavity and the trunk. Both acoustic (via holes in the parcel shelf or behind the backrest of the rear seat), and structural (via the parcel shelf itself, or the panel of the backrest) mechanisms are investigated by both test and CAE. It is found that the peaks in acoustic response of the cavity at low frequencies are due to both acoustic and structural phenomena. However, the acoustic ones can be effectively blocked by proper design of the trim. Recommendations concerning modeling of acoustic effects in sedans are formulated.
Technical Paper

Development of a Model Scale Heat Exchanger for Wind Tunnel Models of Road Vehicles

2008-04-14
2008-01-0097
During the development of the aerodynamic properties of fore coming road vehicles down scaled models are often used in the initial phase. However, if scale models are to be utilised even further in the aerodynamic development they have to include geometrical representatives of most of the components found in the real vehicle. As the cooling package is one of the biggest single generators of aerodynamic drag the heat exchangers are essential to include in a wind tunnel model. However, due mainly to limitations in manufacturing techniques it is complicated to make a down scaled heat exchanger and instead functional dummy heat exchangers have to be developed for scaled wind tunnel models. In this work a Computational Fluid Dynamics (CFD) code has been used to show that it is important that the simplified heat exchanger model has to be of comparable size to that of the full scale unit.
Technical Paper

Testing and Verification of Adaptive Cruise Control and Collision Warning with Brake Support by Using HIL Simulations

2008-04-14
2008-01-0728
This paper presents how hardware in the loop (HIL) simulations have been used for testing during the development of the adaptive cruise control (ACC) and collision warning with brake support (CWBS) functions implemented in the Volvo S80. Both the brake system controller and the controller where the ACC and CWBS functions were implemented were tested. The HIL simulator was used for automated batch simulations in which different controller software releases were analyzed from both system, fail-safe and functional performance perspectives. This paper presents the challenges and the benefits of using HIL simulations when developing distributed active safety functions. Some specific simulation results are analyzed and discussed. The conclusion shows that although it is difficult and time-consuming to develop a complete HIL simulation environment for active safety functions such as ACC and CWBS, the benefits justify the investment.
Technical Paper

Development of the Euro 5 Combustion System for Volvo Cars' 2.4.I Diesel Engine

2009-04-20
2009-01-1450
The development of a new combustion system for a light-duty diesel engine is presented. The soot-NOx trade-off is significantly improved with maintained or improved efficiency. This is accomplished only by altering the combustion chamber geometry, and thereby the in-cylinder flow. The bowl geometry is developed in CFD and validated in single cylinder tests. Tests and simulations align remarkably well. Under identical conditions in the engine the new combustion chamber decreases smoke by 11-27%, NOx by 2-11%, and maintains efficiency as compared to the baseline geometry. The injector nozzle is matched to the new bowl using design of experiments (DoE). By this method transfer functions are obtained that can be used to optimize the system using analytical tools. The emissions show a complex dependence on the nozzle geometry. The emission dependence on nozzle geometry varies greatly over the engine operating range.
Technical Paper

Development and Validation of Coolant Temperature and Cooling Air Flow CFD Simulations at Volvo Cars

2004-03-08
2004-01-0051
This paper describes the development of a robust and accurate method to model one-phase heat exchangers in complete vehicle air flow simulations along with a comprehensive comparison of EFD and CFD results. The comparison shows that the inlet radiator coolant temperatures obtained with CFD were within ±4°C of the experimental data with a trend in the differences being dependent on the car speed. The relative differences in cooling air mass flow rates increase with increasing car speed, with CFD values generally higher than EFD. From the investigation, the conclusion is that the methodology and modeling technique presented offer an accurate tool for concept and system solutions on the front end design, cooling package and fan. Care must be taken in order to provide the best possible boundary conditions paying particular attention to the heat losses in the engine, performance data for the radiator and fan characteristics.
Technical Paper

Complete Engine Modeling Using CFD

2004-03-08
2004-01-0109
When developing gas exchange and combustion systems at Volvo Car Corporation, CFD (Computational Fluid Dynamics) is today a key tool. Three dimensional CFD is by tradition used to study one single component (e.g. manifolds and ports) at a time. Our experience is that this approach suffers from two main limitations; first that the boundary conditions (both upstream and downstream) are uncertain; and secondly that validation against experimental data is extremely difficult since any measured parameter will depend on the complete engine. Distribution of secondary gases and AFR (Air to Fuel ratio) are typical examples where traditional CFD methods fail. One proposed way to overcome these problems is to use 1D gas exchange models coupled with 3D CFD. The main problem with this approach is however the positioning and treatment of the boundaries between the models. Furthermore, the boundaries themselves will unconditionally cause disturbances in the pressure fields.
Technical Paper

Location of the First Auto-Ignition Sites for Two HCCI Systems in a Direct Injection Engine

2004-03-08
2004-01-0564
To elucidate the processes controlling the auto-ignition timing and overall combustion duration in homogeneous charge compression ignition (HCCI) engines, the distribution of the auto-ignition sites, in both space and time, was studied. The auto-ignition locations were investigated using optical diagnosis of HCCI combustion, based on laser induced fluorescence (LIF) measurements of formaldehyde in an optical engine with fully variable valve actuation. This engine was operated in two different modes of HCCI. In the first, auto-ignition temperatures were reached by heating the inlet air, while in the second, residual mass from the previous combustion cycle was trapped using a negative valve overlap. The fuel was introduced directly into the combustion chamber in both approaches. To complement these experiments, 3-D numerical modeling of the gas exchange and compression stroke events was done for both HCCI-generating approaches.
Technical Paper

Numerical Flow Simulations of a Detailed Car Underbody

2001-03-05
2001-01-0703
The airflow around a detailed car underbody has been simulated using a commercial CFD software. Moving ground and rotating-wheel boundary conditions were applied in order to allow comparisons of Cd and dCd values with experimental data from a wind tunnel fitted with moving ground facilities. The calculated Cd and dCd figures compared very well with the available experimental results. Four configurations were tested and the maximum difference between experimental and numerical Cd values was 0.009. The individual contribution of different parts of the vehicle to the total drag was calculated and is discussed in this paper. This paper also describes in detail the numerical technique used to perform the computations.
Technical Paper

Open-Interface Definitions for Automotive Systems1 Application to a Brake by Wire System

2002-03-04
2002-01-0267
Today automotive system suppliers develop more-or-less independent systems, such as brake, power steering and suspension systems. In the future, car manufacturers like Volvo will build up vehicle control systems combining their own algorithms with algorithms provided by automotive system suppliers. Standardization of interfaces to actuators, sensors and functions is an important enabler for this vision and will have major consequences for functionality, prices and lead times, and thus affects both vehicle manufacturers and automotive suppliers. The investigation of the level of appropriate interfaces, as part of the European BRAKE project, is described here. Potential problems and consequences are discussed from both a technical and a business perspective. This paper provides a background on BRAKE and on the functional decomposition upon which the interface definitions are based. Finally, the interface definitions for brake system functionality are given.
Technical Paper

On the Influence of the Near Wall Formulation of Turbulence Models for Prediction of Aerodynamic Coefficients for Ground Vehicles

2003-03-03
2003-01-1317
Numerical and modeling errors in computational aerodynamics consist of multiple components. Previous investigations at Volvo have shown that low Reynolds k-ε models generally give better levels in pressure over the rear base area of the car than the corresponding wall function based model. However, these computations were carried out on car shapes without wheels. This paper presents numerical simulations of the flow field around three versions of the Volvo validation car series (VRAK). The geometry is a typical car with flat floor and simplified tires. The three car models differ by their rear shape. The configurations are: one with a nearly flat base, a fastback with a sloping rear window, and a car with a roof wing. The influence of the near wall formulation of the standard k-ε model on drag and lift is investigated. The performance of the low Reynolds number version of the cubic k-ε model by Suga [7] is also investigated.
Technical Paper

Influences of Different Front and Rear Wheel Designs on Aerodynamic Drag of a Sedan Type Passenger Car

2011-04-12
2011-01-0165
Efforts towards ever more energy efficient passenger cars have become one of the largest challenges of the automotive industry. This involves numerous different fields of engineering, and every finished model is always a compromise between different requirements. Passenger car aerodynamics is no exception; the shape of the exterior is often dictated by styling, engine bay region by packaging issues etcetera. Wheel design is also a compromise between different requirements such as aerodynamic drag and brake cooling, but as the wheels and wheel housings are responsible for up to a quarter of the overall aerodynamic drag on a modern passenger car, it is not surprising that efforts are put towards improving the wheel aerodynamics.
Technical Paper

Modeling and Simulation of Peak Load Events Using Adams - Driving Over a Curb and Skid Against a Curb

2011-04-12
2011-01-0733
The durability peak load events Driving over a curb and Skid against a curb have been simulated in Adams for a Volvo S80. Simulated responses in the front wheel suspension have been validated by comparison with measurements. Due to the extreme nature of the peak load events, the component modeling is absolutely critical for the accuracy of the simulations. All components have to be described within their full range of excitation. Key components and behaviors to model have been identified as tire with wheel strike-through, contacts between curb and tire and between curb and rim, flexibility of structural components, bump stops, bushings, shock absorbers, and camber stiffness of the suspension. Highly non-linear component responses are captured in Adams. However, since Adams only allows linear material response for flexible bodies, the proposed methods to simulate impact loads are only valid up to small, plastic strains.
Technical Paper

Investigation of Performance Differences and Control Synthesis for Servo-Controlled and Vacuum-Actuated Wastegates

2017-03-28
2017-01-0592
1 Turbocharging plays an important role in the downsizing of engines. Model-based approaches for boost control are going to increasing the necessity for controlling the wastegate flow more accurately. In today’s cars, the wastegate is usually only controlled with a duty cycle and without position feedback. Due to nonlinearities and varying disturbances a duty cycle does not correspond to a certain position. Currently the most frequently used feedback controller strategy is to use the boost pressure as the controller reference. This means that there is a large time constant from actuation command to effect in boost pressure, which can impair dynamic performance. In this paper, the performance of an electrically controlled vacuum-actuated waste-gate, subsequently referred to as vacuum wastegate, is compared to an electrical servo-controlled wastegate, also referred to as electric wastegate.
Technical Paper

Comparing Dynamic Programming Optimal Control Strategies for a Series Hybrid Drivetrain

2017-10-08
2017-01-2457
A two-state forward dynamic programming algorithm is evaluated in a series hybrid drive-train application with the objective to minimize fuel consumption when look-ahead information is available. The states in the new method are battery state-of-charge and engine speed. The new method is compared to one-state dynamic programming optimization methods where the requested generator power is found such that the fuel consumption is minimized and engine speed is given by the optimum power-speed efficiency line. The other method compared is to run the engine at a given operating point where the system efficiency is highest, finding the combination of engine run requests over the drive-cycle that minimizes the fuel consumption. The work has included the engine torque and generator power as control signals and is evaluated in a full vehicle-simulation model based on the Volvo Car Corporation VSIM tool.
Technical Paper

Experimental Comparison of Heat Losses in Stepped-Bowl and Re-Entrant Combustion Chambers in a Light Duty Diesel Engine

2016-04-05
2016-01-0732
Heat loss is one of the greatest energy losses in engines. More than half of the heat is lost to cooling media and exhaust losses, and they thus dominate the internal combustion engine energy balance. Complex processes affect heat loss to the cylinder walls, including gas motion, spray-wall interaction and turbulence levels. The aim of this work was to experimentally compare the heat transfer characteristics of a stepped-bowl piston geometry to a conventional re-entrant diesel bowl studied previously and here used as the baseline geometry. The stepped-bowl geometry features a low surface-to-volume ratio compared to the baseline bowl, which is considered beneficial for low heat losses. Speed, load, injection pressure, swirl level, EGR rate and air/fuel ratio (λ) were varied in a multi-cylinder light duty engine operated in conventional diesel combustion (CDC) mode.
Technical Paper

Surface Flow Visualization on a Full-Scale Passenger Car with Quantitative Tuft Image Processing

2016-04-05
2016-01-1582
Flow visualization techniques are widely used in aerodynamics to investigate the surface trace pattern. In this experimental investigation, the surface flow pattern over the rear end of a full-scale passenger car is studied using tufts. The movement of the tufts is recorded with a DSLR still camera, which continuously takes pictures. A novel and efficient tuft image processing algorithm has been developed to extract the tuft orientations in each image. This allows the extraction of the mean tuft angle and other such statistics. From the extracted tuft angles, streamline plots are created to identify points of interest, such as saddle points as well as separation and reattachment lines. Furthermore, the information about the tuft orientation in each time step allows studying steady and unsteady flow phenomena. Hence, the tuft image processing algorithm provides more detailed information about the surface flow than the traditional tuft method.
Technical Paper

Investigations of the Rear-End Flow Structures on a Sedan Car

2016-04-05
2016-01-1606
The aerodynamic drag, fuel consumption and hence CO2 emissions, of a road vehicle depend strongly on its flow structures and the pressure drag generated. The rear end flow which is an area of complex three-dimensional flow structures, contributes to the wake development and the overall aerodynamic performance of the vehicle. This paper seeks to provide improved insight into this flow region to better inform future drag reduction strategies. Using experimental and numerical techniques, two vehicle shapes have been studied; a 30% scale model of a Volvo S60 representing a 2003MY vehicle and a full scale 2010MY S60. First the surface topology of the rear end (rear window and trunk deck) of both configurations is analysed, using paint to visualise the skin friction pattern. By means of critical points, the pattern is characterized and changes are identified studying the location and type of the occurring singularities.
X