Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Optimizing the Transient of an SI-Engine Equipped with Variable Cam Timing and Variable Turbine

2010-04-12
2010-01-1233
As the engines of today decrease in displacement with unchanged power output, focus of today's research is on transient response. The trend of today is to use a turbocharger with high boost level. For SI-engines a regular WG-turbocharger has been used, but in the future, when the boost level increases together with higher demand on the transient response, a Variable Nozzle Turbine (VNT) will be used together with Variable Valve Timing (VVT). As the degree of freedom increases, the control strategies during a transient load step will be more difficult to develop. A 1D simulation experiment has been conducted in GT-Power where the transient simulation was “frozen” at certain time steps. The data from these time steps was put in a stationary simulation and the excessive energy was then bled off to obtain the same conditions for the engine in the stationary simulation as if the engine where in the middle of the transient.
Journal Article

Transient EGR in a High-Speed DI Diesel Engine for a set of different EGR-routings

2010-04-12
2010-01-1271
EGR has been proven to reduce NOx emissions from diesel engines significantly and is nowadays widely used in production engines. To reach future emission legislation standards, alternative EGR-routings that deliver higher EGR-rates get into the focus of researchers. As the steady-state emissions are reduced more and more, the emission peaks in transient parts of driving cycles gain importance. Therefore it is interesting to analyze the transient behavior of different EGR-routings. In this work, a 1-D simulation is performed in GT-Power for a 1.9 liter passenger car diesel engine equipped with cooled short-route EGR and a variable geometry turbine. For calibration of the simulation, load transients are measured including the measurement of transient EGR-rates using a fast CO2-analyzer and cylinder pressure to obtain heat-release data.
Journal Article

A Compact Silencer for the Control of Compressor Noise

2014-06-30
2014-01-2060
Current trends for IC-engines are driving the development of more efficient engines with higher specific power. This is true for both light and heavy duty vehicles and has led to an increased use of super-charging. The super-charging can be both in the form of a single or multi-stage turbo-charger driven by exhaust gases, or via a directly driven compressor. In both cases a possible noise problem can be a strong Blade Passing Frequency (BPF) typically in the kHz range and above the plane wave range. In this paper a novel type of compact dissipative silencer developed especially to handle this type of problem is described and optimized. The silencer is based on a combination of a micro-perforated (MPP) tube backed by a locally reacting cavity. The combined impedance of micro-perforate and cavity is chosen to match the theoretical optimum known as the Cremer impedance at the mid-frequency in the frequency range of interest.
Journal Article

The Influence of In-Cylinder Flows on Emissions and Heat Transfer from Methane-Diesel Dual Fuel Combustion

2013-10-14
2013-01-2509
In order for premixed methane diesel dual fuel engines to meet current and future legislation, the emissions of unburned hydrocarbons must be reduced while high efficiency and high methane utilization is maintained. This paper presents an experimental investigation into the effects of in cylinder air motion, swirl and tumble, on the emissions, heat transfer and combustion characteristics of dual fuel combustion at different air excess ratios. Measurements have been carried out on a single cylinder engine equipped with a fully variable valve train, Lotus AVT. By applying different valve lift profiles for the intake valves, the swirl was varied between 0.5 and 6.5 at BDC and the tumble between 0.5 and 4 at BDC. A commercial 1D engine simulation tool was used to calculate swirl number and tumble for the different valve profiles. Input data for the simulation software was generated using a steady-state flow rig with honeycomb torque measurements.
Journal Article

Measurements of Energy Used for Vehicle Interior Climate

2014-11-01
2014-01-9129
Fuel consumption of vehicles has received increased attention in recent years; however one neglected area that can have a large effect on this is the energy usage for the interior climate. This study aims to investigate the energy usage for the interior climate for different conditions by measurements on a complete vehicle. Twelve different NEDC tests in different temperatures and thermal states of the vehicle were completed in a climatic wind tunnel. Furthermore one temperature sweep from 43° to −18°C was also performed. The measurements focused on the heat flow of the air, from its sources, to its sink, i.e. compartment. In addition the electrical and mechanical loads of the climate system were included. The different sources of heating and cooling were, for the tested powertrain, waste heat from the engine, a fuel operated heater, heat pickup of the air, evaporator cooling and cooling from recirculation.
Technical Paper

A Strategy for Developing an Inclusive Load Case for Verification of Squeak and Rattle Noises in the Car Cabin

2021-08-31
2021-01-1088
Squeak and rattle (S&R) are nonstationary annoying and unwanted noises in the car cabin that result in considerable warranty costs for car manufacturers. Introduction of cars with remarkably lower background noises and the recent emphasis on electrification and autonomous driving further stress the need for producing squeak- and rattle-free cars. Automotive manufacturers use several road disturbances for physical evaluation and verification of S&R. The excitation signals collected from these road profiles are also employed in subsystem shaker rigs and virtual simulations that are gradually replacing physical complete vehicle test and verification. Considering the need for a shorter lead time and the introduction of optimisation loops, it is necessary to have efficient and inclusive excitation load cases for robust S&R evaluation.
Journal Article

Car Ride Before Entering the Lab Increases Precision in Listening Tests

2015-06-15
2015-01-2285
Subjects who are well aware of what to judge commonly yield more consistent results in laboratory listening tests. This awareness may be raised by explicit instructions and training. However, too explicit instructions or use of only trained subjects may direct experiment results in an undesired way. An alternative is to give fairly open instructions to untrained subjects, but give the subjects a chance to get familiar with the product and context by, for example, riding a representative car under representative driving conditions before entering the laboratory. In this study, sound quality assessments of interior sounds of cars made by two groups were compared. In one group subjects were exposed to the same driving conditions that were later assessed in a laboratory listening test by taking them on a ride in one of the cars to be assessed, just before entering the laboratory. In the other group subjects made the laboratory assessments without prior car riding.
Journal Article

Structures of Flow Separation on a Passenger Car

2015-04-14
2015-01-1529
The phenomenon of three-dimensional flow separation is and has been in the focus of many researchers. An improved understanding of the physics and the driving forces is desired to be able to improve numerical simulations and to minimize aerodynamic drag over bluff bodies. To investigate the sources of separation one wants to understand what happens at the surface when the flow starts to detach and the upwelling of the streamlines becomes strong. This observation of a flow leaving the surface could be captured by investigating the limiting streamlines and surface parameters as pressure, vorticity or the shear stress. In this paper, numerical methods are used to investigate the surface pressure and flow patterns on a sedan passenger vehicle. Observed limiting streamlines are compared to the pressure distribution and their correlation is shown. For this investigation the region behind the antenna and behind the wheel arch, are pointed out and studied in detail.
Journal Article

Simulation of Energy Used for Vehicle Interior Climate

2015-12-01
2015-01-9116
In recent years fuel consumption of passenger vehicles has received increasing attention by customers, the automotive industry, regulatory agencies and academia. However, some areas which affect the fuel consumption have received relatively small interest. One of these areas is the total energy used for vehicle interior climate which can have a large effect on real-world fuel consumption. Although there are several methods described in the literature for analyzing fuel consumption for parts of the climate control system, especially the Air-Condition (AC) system, the total fuel consumption including the vehicle interior climate has often been ignored, both in complete vehicle testing and simulation. The purpose of this research was to develop a model that predicts the total energy use for the vehicle interior climate. To predict the total energy use the model included sub models of the passenger compartment, the air-handling unit, the AC, the engine cooling system and the engine.
Journal Article

Investigating the Limits of Charge Motion and Combustion Duration in a High-Tumble Spark-Ignited Direct-Injection Engine

2016-10-17
2016-01-2245
This paper describes the experimental study of a tumble-flap mounted in the intake port of a single-cylinder spark-ignited gasoline engine. The research question addressed was whether an optimal tumble level could be found for the combustion system under investigation. Indicated fuel consumption was measured for a number of part-load operating points with the tumble-flap either open or closed. The experimental results were subjected to an energy balance analysis to understand which portion of the fuel energy was converted to work and how much was lost by incomplete combustion, heat losses to walls and to the exhaust gases, as well as to pumping losses. Closing the tumble-flap resulted in reduced fuel consumption only in a small area of the operating map: only at low-speed, low-load operation, a benefit could be obtained.
Journal Article

Disintegration Mechanisms of Intermittent Liquid Jets

2016-04-05
2016-01-0851
It has been observed that intermittent injection leads to improved spray characteristics in terms of mixing and gas entrainment. Although some experimental work has been carried out in the past, the disintegration mechanisms that govern the breakup of intermittent jets remain unknown. In this paper we have carried out a systematic numerical analysis of the breakup of pulsated jets under different injection conditions. More specifically, the duty cycle (share of active injection during one cycle) is varied, while the total cycle time is kept constant. The advection of the liquid phase is handled through the Volume of Fluid approach and, in order to provide an accurate, yet computationally acceptable, resolution of the turbulent structures, the implicit Large Eddy Simulation has been adopted. The results show that the primary disintegration results from a combination of stretching, collision and aerodynamic interaction effects.
Journal Article

Semi-Empirical CFD Transient Simulation of Engine Air Filtration Systems

2016-04-05
2016-01-1368
To improve fuel efficiency and facilitate handling of the vehicle in a dense city environment, it should be as small as possible given its intended application. This downsizing trend impacts the size of the engine bay, where the air filter box has to be packed in a reduced space, still without increased pressure drop, reduced load capacity nor lower filtering efficiency. Due to its flexibility and reduced cost, CFD simulations play an important role in the optimization process of the filter design. Even though the air-flow through the filter box changes as the dust load increases, the current modeling framework seldom account for such time dependence. Volvo Car Corporation presents an industrial affordable model to solve the time-dependent dust load on filter elements and calculate the corresponding flow behavior over the life time of the air filter box.
Journal Article

Performance Studies and Correlation between Vehicle- and Rapid- Aged Commercial Lean NOx Trap Catalysts

2017-03-28
2017-01-0940
Even though substantial improvements have been made for the lean NOx trap (LNT) catalyst in recent years, the durability still remains problematic because of the sulfur poisoning and sintering of the precious metals at high operating temperatures. Hence, commercial LNT catalysts were aged and tested in order to investigate their performance and activity degradation compared to the fresh catalyst, and establish a proper correlation between the aging methods used. The target of this study is to provide useful information for regeneration strategies and optimize the catalyst management for better performance and durability. With this goal in mind, two different aging procedures were implemented in this investigation. A catalyst was vehicle-aged in the vehicle chassis dynamometer for 100000 km, thus exposed to real conditions. Whereas, an accelerated aging method was used by subjecting a fresh LNT catalyst at 800 °C for 24 hours in an oven under controlled conditions.
Technical Paper

Defining Fundamental Vehicle Actions for the Development of Automated Driving Systems

2020-04-14
2020-01-0712
Automated Driving Systems (ADSs) show great potential to improve our transport systems. Safety validation, before market launch, is challenging due to the large number of miles required to gather enough evidence for a proven in use argumentation. Hence there is ongoing research to find more effective ways of verifying and validating the safety of ADSs. It is crucial both for the design as well as the validation to have a good understanding of the environment of the ADS. A natural way of characterizing the external conditions is by modelling and analysing data from real traffic. Towards this end, we present a framework with the primary ultimate objective to completely model and quantify the statistically relevant actions that other vehicles conduct on motorways. Two categories of fundamental actions are identified by recognising that a vehicle can only move longitudinally and laterally.
Journal Article

An Evaluation of Different Combustion Strategies for SI Engines in a Multi-Mode Combustion Engine

2008-04-14
2008-01-0426
Future pressures to reduce the fuel consumption of passenger cars may require the exploitation of alternative combustion strategies for gasoline engines to replace, or use in combination with the conventional stoichiometric spark ignition (SSI) strategy. Possible options include homogeneous lean charge spark ignition (HLCSI), stratified charge spark ignition (SCSI) and homogeneous charge compression ignition (HCCI), all of which are intended to reduce pumping and thermal losses. In the work presented here four different combustion strategies were evaluated using the same engine: SSI, HLCSI, SCSI and HCCI. HLCSI was achieved by early injection and operating the engine lean, close to its stability limits. SCSI was achieved using the spray-guided technique with a centrally placed multi-hole injector and spark-plug. HCCI was achieved using a negative valve overlap to trap hot residuals and thus generate auto-ignition temperatures at the end of the compression stroke.
Journal Article

A Study on Acoustical Time-Domain Two-Ports Based on Digital Filters with Application to Automotive Air Intake Systems

2011-05-17
2011-01-1522
Analysis of pressure pulsations in ducts is an active research field within the automotive industry. The fluid dynamics and the wave transmission properties of internal combustion (IC) engine intake and exhaust systems contribute to the energy efficiency of the engines and are hence important for the final amount of CO₂ that is emitted from the vehicles. Sound waves, originating from the pressure pulses caused by the in- and outflow at the engine valves, are transmitted through the intake and exhaust system and are an important cause of noise pollution from road traffic at low speeds. Reliable prediction methods are of major importance to enable effective optimization of gas exchange systems. The use of nonlinear one-dimensional (1D) gas dynamics simulation software packages is widespread within the automotive industry. These time-domain codes are mainly used to predict engine performance parameters such as output torque and power but can also give estimates of radiated orifice noise.
Journal Article

The Effect of Tumble Flow on Efficiency for a Direct Injected Turbocharged Downsized Gasoline Engine

2011-09-11
2011-24-0054
Direct gasoline injection combined with turbo charging and down sizing is a cost effective concept to meet future requirements for emission reduction as well as increased efficiency for passenger cars. It is well known that turbulence induced by in-cylinder air motion can influence efficiency. In this study, the intake-generated flow field was varied for a direct injected turbo charged concept, with the intent to evaluate if further increase in tumble potentially could lead to higher efficiency compared to the baseline. A single cylinder head with flow separating walls in the intake ports and different restriction plates was used to allow different levels of tumble to be experimentally evaluated in a single cylinder engine. The different levels of tumble were quantified by flow rig experiments.
Journal Article

The Influence of Crevices on Hydrocarbon Emissions from a Diesel-Methane Dual Fuel Engine

2013-04-08
2013-01-0848
Emissions of unburned methane are the Achilles heel of premixed gas engines whether they are spark ignited or diesel pilot ignited. If the engine is operated lean, lower temperatures prevail in the combustion chamber and several of the mechanisms behind the hydrocarbon emissions are aggravated. This paper presents an experimental investigation of the contribution from combustion chamber crevices and quenching to the total hydrocarbon emissions from a diesel-methane dual fuel engine at different operating conditions and air excess ratios. It is shown that the sensitivity to a change in topland crevice volume is greater at lean conditions than at stoichiometry. More than 70% of hydrocarbon emissions at air excess ratios relevant to operation of lean burn engines can be attributed to crevices.
Journal Article

Investigation of the Influence of Tyre Geometry on the Aerodynamics of Passenger Cars

2013-04-08
2013-01-0955
It is well known that wheels are responsible for a significant amount of the total aerodynamic drag of passenger vehicles. Tyres, and mostly rims, have been the subject of research in the automotive industry for the past years, but their effect and interaction with each other and with the car exterior is still not completely understood. This paper focuses on the use of CFD to study the effects of tyre geometry (tyre profile and tyre tread) on road vehicle aerodynamics. Whenever possible, results of the numerical computations are compared with experiments. More than sixty configurations were simulated. These simulations combined different tyre profiles, treads, rim designs and spoke orientation on two car types: a sedan and a sports wagon. Two tyre geometries were obtained directly from the tyre manufacturer, while a third geometry was obtained from our database and represents a generic tyre which covers different profiles of a given tyre size.
Journal Article

Investigation of Wheel Ventilation-Drag using a Modular Wheel Design Concept

2013-04-08
2013-01-0953
Passenger car fuel consumption is a constant concern for automotive companies and the contribution to fuel consumption from aerodynamics is well known. Several studies have been published on the aerodynamics of wheels. One area of wheel aerodynamics discussed in some of these earlier works is the so-called ventilation resistance. This study investigates ventilation resistance on a number of 17 inch rims, in the Volvo Cars Aerodynamic Wind Tunnel. The ventilation resistance was measured using a custom-built suspension with a tractive force measurement system installed in the Wheel Drive Units (WDUs). The study aims at identifying wheel design factors that have significant effect on the ventilation resistance for the investigated wheel size. The results show that it was possible to measure similar power requirements to rotate the wheels as was found in previous works.
X