Refine Your Search

Topic

Author

Search Results

Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Battery Electric Vehicles and Extended Range Electric Vehicles, like the Chevrolet Volt, can use electrical energy from the Grid to meet the majority of a driver�s transportation needs. This has the positive societal effects of displace petroleum consumption and associated pollutants from combustion on a well to wheels basis, as well as reduced energy costs for the driver. CO2 may also be lower, but this depends upon the nature of the grid energy generation. There is a mix of sources � coal-fired, gas -fired, nuclear or renewables, like hydro, solar, wind or biomass for grid electrical energy. This mix changes by region, and also on the weather and time of day. By monitoring the grid mix and communicating it to drivers (or to their vehicles) in real-time, electrically driven vehicles may be recharged to take advantage of the lowest CO2, and potentially lower cost charging opportunities.
Journal Article

Experimental Investigation of Heat Transfer Rate and Pressure Drop through Angled Compact Heat Exchangers Relative to the Incoming Airflow

2014-09-30
2014-01-2337
This paper presents pressure drops and heat transfer rates for compact heat exchangers, where the heat exchangers are angled 90°, 60°, 30° and 10° relative to the incoming airflow. The investigation is based on three heat exchangers with thicknesses of 19mm and 52mm. Each heat exchanger was mounted in a duct, where it was tested for thermal and isothermal conditions. The inlet temperature of the coolant was defined to two temperatures; ambient temperature and 90°C. For the ambient cases the coolant had the same temperature as the surrounding air, these tests were performed for five airflow rates. When the coolant had a temperature of 90°C a combination of five coolant flow rates and five airflow rates were tested. The test set-up was defined as having a constant cross-section area for 90°, 60° and 30° angles, resulting in a larger core area and a lower airspeed through the core, for a more inclined heat exchanger.
Journal Article

Comparative Studies between CFD and Wind Tunnel Measurements of Cooling Performance and External Aerodynamics for a Heavy Truck

2014-09-30
2014-01-2443
Nowadays, much focus for vehicle manufacturers is directed towards improving the energy efficiency of their products. The aerodynamic drag constitutes one major part of the total driving resistance for a vehicle travelling at higher speeds. In fact, above approximately 80km/h the aerodynamic drag is the dominating resistance acting on a truck. Hence the importance of reducing this resistance is apparent. Cooling drag is one part of the total aerodynamic drag, which arises from air flowing through the heat exchangers, and the irregular under-hood area. When using Computational Fluid Dynamics (CFD) in the development process it is of great importance to ensure that the methods used are accurately capturing the physics of the flow. This paper deals with comparative studies between CFD and wind-tunnel tests. In this paper, two comparative studies are presented.
Journal Article

Measurements of Energy Used for Vehicle Interior Climate

2014-11-01
2014-01-9129
Fuel consumption of vehicles has received increased attention in recent years; however one neglected area that can have a large effect on this is the energy usage for the interior climate. This study aims to investigate the energy usage for the interior climate for different conditions by measurements on a complete vehicle. Twelve different NEDC tests in different temperatures and thermal states of the vehicle were completed in a climatic wind tunnel. Furthermore one temperature sweep from 43° to −18°C was also performed. The measurements focused on the heat flow of the air, from its sources, to its sink, i.e. compartment. In addition the electrical and mechanical loads of the climate system were included. The different sources of heating and cooling were, for the tested powertrain, waste heat from the engine, a fuel operated heater, heat pickup of the air, evaporator cooling and cooling from recirculation.
Technical Paper

A Strategy for Developing an Inclusive Load Case for Verification of Squeak and Rattle Noises in the Car Cabin

2021-08-31
2021-01-1088
Squeak and rattle (S&R) are nonstationary annoying and unwanted noises in the car cabin that result in considerable warranty costs for car manufacturers. Introduction of cars with remarkably lower background noises and the recent emphasis on electrification and autonomous driving further stress the need for producing squeak- and rattle-free cars. Automotive manufacturers use several road disturbances for physical evaluation and verification of S&R. The excitation signals collected from these road profiles are also employed in subsystem shaker rigs and virtual simulations that are gradually replacing physical complete vehicle test and verification. Considering the need for a shorter lead time and the introduction of optimisation loops, it is necessary to have efficient and inclusive excitation load cases for robust S&R evaluation.
Technical Paper

Numerical Investigation of Narrow-Band Noise Generation by Automotive Cooling Fans

2020-09-30
2020-01-1513
Axial cooling fans are commonly used in electric vehicles to cool batteries with high heating load. One drawback of the cooling fans is the high aeroacoustic noise level resulting from the fan blades and the obstacles facing the airflow. To create a comfortable cabin environment in the vehicle, and to reduce exterior noise emission, a low-noise installation design of the axial fan is required. The purpose of the study is to investigate efficient computational aeroacoustics (CAA) simulation processes to assist the cooling-fan installation design. In this paper we report the current progress of the investigation, where the narrow-band components of the fan noise is focused on. Two methods are used to compute the noise source. In the first method the source is computed from the flow field obtained using the unsteady Reynolds-averaged Navier-Stokes equations (unsteady RANS, or URANS) model.
Journal Article

CFD Simulations of one Period of a Louvered Fin where the Airflow is Inclined Relative to the Heat Exchanger

2015-04-14
2015-01-1656
This article presents Computational Fluid Dynamics (CFD) simulations fo one period of a louvered fin, for a crossflow compact finned heat exchanger, where the incoming airflow was inclined relative to its core. Four inclinations were investigated: 90°, which was when the air flowed perpendicular to the heat exchanger, 60°, 30° and 10° angles relative to the vertical plane. The study included three heat exchanger designs, where two of them had symmetrical louvered fins and a thickness of 19mm and 52mm. The third had a thickness of 19mm and had the louvers angled in one direction. All heat exchangers have been simulated when the airflow entered both from above and below relative to the horizontal plane. Simulations have also been carried out when the airflow entered from the side, illustrating the heat exchanger to be angled relative to the vertical axis. Two air speeds have been investigated for each configuration, where the results were compared to experimental data.
Journal Article

Force Based Measurement Method for Cooling Flow Quantification

2017-03-28
2017-01-1520
Quantification of heat exchanger performance in its operative environment is in many engineering applications an essential task, and the air flow rate through the heat exchanger core is an important optimizing parameter. This paper explores an alternative method for quantifying the air flow rate through compact heat exchangers positioned in the underhood of a passenger car. Unlike conventional methods, typically relying on measurements of direct flow characteristics at discrete probe locations, the proposed method is based on the use of load-cells for direct measurement of the total force acting on the heat exchanger. The air flow rate is then calculated from the force measurement. A direct comparison with a conventional pressure based method is presented as both methods are applied on a passenger car’s radiator tested in a full scale wind tunnel using six different grill configurations. The measured air flow rates are presented and discussed over a wide range of test velocities.
Journal Article

Aerodynamic Investigation of Gap Treatment- and Chassis Skirts Strategies for a Novel Long-Haul Vehicle Combination

2012-09-24
2012-01-2044
Constantly lowering emissions legislation and the fact that fuel prices have increased tremendously over recent years, have forced vehicle manufacturers to develop more and more energy-efficient vehicles. The aerodynamic drag is responsible for a substantial part of the total driving resistance for a vehicle, especially at higher velocities; thus it is important to reduce this factor as much as possible for vehicles commonly operating in these conditions. In an attempt to improve transport efficiency, longer vehicle combinations are becoming more common. By replacing some of the shorter vehicle combinations with longer combinations, the same amount of cargo can be transported with fewer vehicles; hence there is large potential for fuel savings. The knowledge of the aerodynamic properties of such vehicles is somewhat limited, and therefore interesting to study.
Technical Paper

Effect of Ultra-High Injection Pressure on Diesel Ignition and Flame under High-Boost Conditions

2008-06-23
2008-01-1603
In this work, we conducted three-dimensional numerical simulations to investigate the effect of ultra-high injection pressure on diesel ignition and flame under high-boost and medium-load conditions. Three injection cases employed in experiments with a multi-cylinder Volvo D12 engine were applied for validation. The simulations were performed using the KIVA-3V code, with a Kelvin-Helmholz/Rayleigh-Taylor (KH/RT) spray breakup model and a diesel surrogate mechanism involving 83 species and 445 reactions. A range of higher injection pressure levels were projected and the injection rates estimated for the current study. Three different rate shapes of injection were projected and investigated as well. All the projected injection events start at top dead center (TDC). Computations demonstrate that high-pressure injection strongly affects engine ignition and combustion.
Technical Paper

Development of a Model Scale Heat Exchanger for Wind Tunnel Models of Road Vehicles

2008-04-14
2008-01-0097
During the development of the aerodynamic properties of fore coming road vehicles down scaled models are often used in the initial phase. However, if scale models are to be utilised even further in the aerodynamic development they have to include geometrical representatives of most of the components found in the real vehicle. As the cooling package is one of the biggest single generators of aerodynamic drag the heat exchangers are essential to include in a wind tunnel model. However, due mainly to limitations in manufacturing techniques it is complicated to make a down scaled heat exchanger and instead functional dummy heat exchangers have to be developed for scaled wind tunnel models. In this work a Computational Fluid Dynamics (CFD) code has been used to show that it is important that the simplified heat exchanger model has to be of comparable size to that of the full scale unit.
Technical Paper

A Correction Method for Stationary Fan CFD MRF Models

2009-04-20
2009-01-0178
A common fan model to use in automotive under hood simulations is the Multiple Reference Frame (MRF) model and within the industry, for this specific application, this model is well known to under predict performance. In this paper we have examined the possibilities of correcting this deficiency with a simple “speed correction”. This is done by testing and simulating a production fan in the Volvo Fan Test Rig for two operating speeds, 1200 rpm and 2400 rpm. Pressure rise, fan power and static efficiency are presented as functions of volumetric flow rate. The simulations verify that using the MRF model the common behavior of under predicting pressure rise and performance of the fan occur. In addition, this work shows that; although the MRF is not predicting fan performance correctly it constitutes a reliable fan modeling strategy.
Technical Paper

Early Risk Identification and Cost-Benefit Analyses through Ergonomics Simulation

2009-06-09
2009-01-2287
For cost-beneficial reasons simulations with computer manikins have been increasingly used in the automotive industry for prediction of ergonomics problems before the product and work place exist in physical form. The main purpose of ergonomics simulations is to apply biomechanical models and data to assess the acceptability of the physical work load, e.g. working postures, visibility, clearance etc., which could result in requirements to change the design of the product. The aim is to improve ergonomics conditions in manual assembly and to promote a better product quality through improved assemblability (ease of assembly). Many studies have shown a clear correlation between assembly ergonomics and product quality and that poor assembly ergonomics result in impaired product quality and in decreased productivity. Nevertheless, there are remaining difficulties in achieving acceptance for changes of product and production solutions because of poor assembly ergonomics.
Technical Paper

A Novel Concept for Combined Hydrogen Production and Power Generation

2009-06-15
2009-01-1946
A novel concept of combined hydrogen production and power generation system based on the combustion of aluminum in water is explored. The energy conversion system proposed is potentially able to provide four different energy sources, such us pressurized hydrogen, high temperature steam, heat, and work at the crankshaft on demand, as well as to fully comply with the environment sustainability requirements. Once aluminum oxide layer is removed, the pure aluminum can react with water producing alumina and hydrogen while releasing a significant amount of energy. Thus, the hydrogen can be stored for further use and the steam can be employed for energy generation or work production in a supplementary power system. The process is proved to be self-sustained and to provide a remarkable amount of energy available as work or hydrogen.
Technical Paper

An Investigation and Correction Method of Stationary Fan CFD MRF Simulations

2009-10-01
2009-01-3067
A common fan model to use in automotive under hood simulations is the Multiple Reference Frame (MRF) model and within the industry, for this specific application, this model is well known to under predict performance. In a former paper, referenced 2009-01-0178, a simple “speed correction” of the MRF model was proposed by the authors'. The correction was shown to apply across different operating speeds for a specific fan. In this paper the generality and limitation of this correction across fans of different type, design and dimensions are investigated. Investigated in this paper is as well the sensitivity of the MRF model to specific methodology of use. In this paper it is shown that the speed correction of 14% proposed in the former paper applies widely, hence, although the MRF model is erroneous the error is consistent.
Technical Paper

Location of the First Auto-Ignition Sites for Two HCCI Systems in a Direct Injection Engine

2004-03-08
2004-01-0564
To elucidate the processes controlling the auto-ignition timing and overall combustion duration in homogeneous charge compression ignition (HCCI) engines, the distribution of the auto-ignition sites, in both space and time, was studied. The auto-ignition locations were investigated using optical diagnosis of HCCI combustion, based on laser induced fluorescence (LIF) measurements of formaldehyde in an optical engine with fully variable valve actuation. This engine was operated in two different modes of HCCI. In the first, auto-ignition temperatures were reached by heating the inlet air, while in the second, residual mass from the previous combustion cycle was trapped using a negative valve overlap. The fuel was introduced directly into the combustion chamber in both approaches. To complement these experiments, 3-D numerical modeling of the gas exchange and compression stroke events was done for both HCCI-generating approaches.
Technical Paper

Flow Visualization Study of an HVAC Module Operated in Water

2001-05-14
2001-01-1702
Centrifugal blowers serve as the primary source of airflow and aero-acoustic noise in automotive HVAC modules. Flow field measurements inside blowers indicate very complex flow patterns. A detailed flow visualization study was conducted on an actual HVAC fan module operated in water under dynamically similar conditions as those in air with the purpose of studying the complex flow patterns in order to improve the aerodynamic performance of the fan/scroll casing and diffuser components. Fan-scroll/diffuser interaction was also studied as function of fan speed. Conventional and special (shear thickening) dye injection flow visualization techniques were used to study the complex 3-dimensional vortical and unsteady flow patterns that occur in typical HVAC fans. A major advantage of the flow visualization technique using shear-thickening dye is its usefulness in high the Reynolds number flows that are typically encountered inside HVAC modules.
Technical Paper

It's in the Eye of the Beholder: Who Should be the User of Computer Manikin Tools?

2003-06-17
2003-01-2196
The aim of this study was to examine the influence of computer manikin users' background and knowledge for the results of a computer manikin simulation. Subjects taking part in the study were either production engineers or ergonomists. A manual task that presented production and ergonomics problems was used. The task was simulated prior to the subjects' sessions, using the computer manikin software Jack. During the sessions, the animated simulation was shown to the test subject. Results show that there are differences in how production engineers and ergonomists interpret results from a manikin simulation. Depending on the user's background, certain aspects that are difficult to visualise with the computer manikin were interpreted differently, regarding e.g. detected problems and holistic perspectives.
Technical Paper

Effect of Injection Parameters on Auto-Ignition and Soot Formation in Diesel Sprays

2001-09-24
2001-01-3687
A validation study of the numerical model of n-heptane spray combustion based on experimental constant-volume data [1] was done, by comparing auto-ignition delays for different pre - turbulence levels and initial temperatures, flame contours, and soot distributions under Diesel-like conditions. The basic novelty of the methodology developed in [2] - [3] is the implementation of the partially stirred reactor (PaSR) model accounting for detailed chemistry / turbulence interactions. It is based on the assumption that the chemical processes proceed in two successive steps: micro mixing, simulated on a sub - grid scale, is followed by the reaction act. When the all Re number RNG k-ε or LES models are employed, the micro mixing time can be consistently defined giving the combustion model a “well-closed” form incorporated into the KIVA-3V code.
Technical Paper

Speed Limit in City Area and Improvement of Vehicle Front Design for Pedestrian Impact Protection-A Computer Simulation Study

2001-06-04
2001-06-0227
This paper presented a part of results from an ongoing project for pedestrian protection, which is carried out at Chalmers University of Technology in Sweden. A validated pedestrian mathematical model was used in this study to simulate vehicle-pedestrian impacts. A large number of simulations have been carried out with various parameters. The injury-related parameters concerning head, chest, pelvis and lower extremities were calculated to evaluate the effect of impact speed and vehicle front structure on the risk of pedestrian injuries. The effect of following vehicle parameters was studied: stiffness of bumper, hood edge, hood top, windscreen frame, and shape of vehicle front structures. A parameter study was conducted by modelling vehicle-pedestrian impacts with various sizes of cars, mini vans, and light trucks. This choice represents the trends of new vehicle fleet and their frequency of involvement in real world accidents.
X