Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Effect of EGR on Autoignition, Combustion, Regulated Emissions and Aldehydes in DI Diesel Engines

2002-03-04
2002-01-1153
In view of the new regulations for diesel engine emissions, EGR is used to reduce the NOx emissions. Diluting the charge with EGR affects the autoignition, combustion as well as the regulated and unregulated emissions of diesel engines, under different operating conditions. This paper presents the results of an investigation on the effect of EGR on the global activation energy and order of the autoignition reactions, premixed and mixing-controlled combustion fractions, the regulated (unburned hydrocarbons, NOx, CO and particulates), aldehydes, CO2 and HC speciation. The experiments were conducted on two different direct injection, four-stroke-cycle, single-cylinder diesel engines over a wide range of operating conditions and EGR ratios.
Technical Paper

Transient Engine and Piston Friction During Starting

1992-10-01
922197
The instantaneous frictional torque (IFT) of the engine and the piston-ring assembly frictional force (PRAFF) were determined during cranking and starting of a direct injection single cylinder diesel engine. The measurements included the cylinder gas pressure, the instantaneous torque of the electric starter, the angular velocity of the crankshaft and the axial force on the connecting rod. The engine and piston friction were determined every crank angle degree for all the cycles from the time the starter was engaged to the time the engine reached the idling speed. The data was analyzed and a comparison was made between the friction in successive cycles.
Technical Paper

In-Situ Phase-Shift Measurement of the Time-Resolved UBHC Emissions

1995-02-01
950161
The UBHC emissions during cold starting need to be controlled in order to meet the future stringent standards. This requires a better understanding of the characteristics of the time resolved UBHC signal measured by a high frequency FID and its phasing with respect to the valve events. The computer program supplied with the instrument and currently used to compute the phase shift has many uncertainties due to the unsteady nature of engine operation during starting. A new technique is developed to measure the in-situ phase shift of the UBHC signal under the transient thermodynamic and dynamic conditions of the engine. The UBHC concentration is measured at two locations in the exhaust manifold of one cylinder in a multicylinder port injected gasoline engine. The two locations are 77 mm apart. The downstream probe is positioned opposite to a solenoid-operated injector which delivers a gaseous jet of hydrocarbon-free nitrogen upon command.
Technical Paper

Diesel Cold-Starting Study Using Optically Accessible Engines

1995-10-01
952366
An experimental and numerical study was carried out to simulate the diesel spray behavior during cold starting conditions inside two single-cylinder optically accessible engines. One is an AVL single-cylinder research diesel engine converted for optical access; the other is a TACOM/LABECO engine retrofitted with mirror-coupled endoscope access. The first engine is suitable for sophisticated optical diagnostics but is constrained to limited consecutive fuel injections or firings. The second one is located inside a micro-processor controlled cold room; therefore it can be operated under a wide range of practical engine conditions and is ideal for cycle-to-cycle variation study. The intake and blow-by flow rates are carefully measured in order to clearly define the operation condition. In addition to cylinder pressure measurement, the experiment used 16-mm high-speed movie photography to directly visualize the global structures of the sprays and ignition process.
Technical Paper

Starting of Diesel Engines: Uncontrolled Fuel Injection Problems

1986-02-01
860253
Many problems can develop from the uncontrolled fuel injection during cranking and starting of diesel engines. Some of the problems are related to excessive wear as a result of the high peak pressures reached upon combustion after misfiring, the relatively low rotating speeds and the lack of formation of a lubricating oil film between the interacting surfaces. Another problem is the emission of high amounts of unburned hydrocarbons and white smoke. Experimental results are given for a single cylinder and a multicylinder diesel engine, for the instantaneous angular velocity and cylinder pressures from the starter-on point until the engine fires. The causes of misfiring during cranking are investigated. The role of the increased blow-by gases on the autoignition process at the low cranking speeds is analyzed both analytically and experimentally. The contribution of the instantaneous angular velocity at the time of injection, on the autoignition process is investigated.
Technical Paper

Exploration of the Contribution of the Start/Stop Transients in HEV Operation and Emissions

2000-08-21
2000-01-3086
The effects of the start/stop (S/S) transients on the Hybrid Electric Vehicle (HEV) operation and emissions are explored in this study. The frequency with which the engine starts and stops during an urban driving cycle is estimated by using the NREL's Advanced Vehicle Simulator software (ADVISOR). Furthermore, several tests were conducted on single-cylinder and multi-cylinder direct injection diesel engines in order to measure the cycle-resolved mole fractions of the hydrocarbons and nitric oxide exhaust emissions under frequent start/stop mode of operation. The frictional losses in engine in its entirety as well as in its components are also determined. In addition, the dynamic behavior of different high pressure fuel injection systems are investigated under the start and stop mode of operation.
Technical Paper

Direct Visualization of High Pressure Diesel Spray and Engine Combustion

1999-10-25
1999-01-3496
An experimental study was carried out to visualize the spray and combustion inside an AVL single-cylinder research diesel engine converted for optical access. The injection system was a hydraulically-amplified electronically-controlled unit injector capable of high injection pressure up to 180 MPa and injection rate shaping. The injection characteristics were carefully characterized with injection rate meter and with spray visualization in high-pressure chamber. The intake air was supplied by a compressor and heated with a 40kW electrical heater to simulate turbocharged intake condition. In addition to injection and cylinder pressure measurements, the experiment used 16-mm high-speed movie photography to directly visualize the global structures of the sprays and ignition process. The results showed that optically accessible engines provide very useful information for studying the diesel combustion conditions, which also provided a very critical test for diesel combustion models.
X