Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Mechanical Properties of the Cadaveric and Hybrid III Lumbar Spines

1998-11-02
983160
This study identified the mechanical properties of ten cadaveric lumbar spines and two Hybrid III lumbar spines. Eight tests were performed on each specimen: tension, compression, anterior shear, posterior shear, left lateral shear, flexion, extension and left lateral bending. Each test was run at a displacement rate of 100 mm/sec. The maximum displacements were selected to approximate the loading range of a 50 km/h Hybrid III dummy sled test and to be non-destructive to the specimens. Load, linear displacement and angular displacement data were collected. Bending moment was calculated from force data. Each mode of loading demonstrated consistent characteristics. The load-displacement curves of the Hybrid III lumbar spine demonstrated an initial region of high stiffness followed by a region of constant stiffness.
Technical Paper

Finite Element Modeling of Direct Head Impact

1993-11-01
933114
A 3-D finite element human head model has been developed to study the dynamic response of the human head to direct impact by a rigid impactor. The model simulated closely the main anatomical features of an average adult head. It included the scalp, a three-layered skull, cerebral spinal fluid (CSF), dura mater, falx cerebri, and brain. The layered skull, cerebral spinal fluid, and brain were modeled as brick elements with one-point integration. The scalp, dura mater, and falx cerebri were treated as membrane elements. To simulate the strain rate dependent characteristics of the soft tissues, the brain and the scalp were considered as viscoelastic materials. The other tissues of the head were assumed to be elastic. The model contains 6080 nodes, 5456 brick elements, and 1895 shell elements. To validate the head model, it was impacted frontally by a cylinder to simulate the cadaveric tests performed by Nahum et. al. (8).
Technical Paper

Shear Stress Distribution in the Porcine Brain due to Rotational Impact

1994-11-01
942214
Two-dimensional finite element models for three coronal sections of the porcine brain have been developed and the results were compared with injury data from animal experiments performed at the University of Pennsylvania (Ross et al, 1994). The models consisted of a three-layered skull, dura, CSF, white matter, gray matter and ventricles. Model I, a section at the septal nuclei and anterior commissure level, contains 490 solid elements and 108 membrane elements. Model II, a section at the rostral-thalamic level, contains 644 solid elements and 130 membrane elements. Model III, a section at the caudal hippocampal level, contains 548 solid elements and 104 membrane elements. Plane strain conditions were assumed for all models. Material properties of the brain were taken from previous human brain models, but the white matter was assumed to be about 60% stronger than the gray matter with the same Poisson's ratio.
Technical Paper

Experimental and Analytical Study of Knee Fracture Mechanisms in a Frontal Knee Impact

1996-11-01
962423
The mechanisms of knee fracture were studied experimentally using cadaveric knees and analytically by computer simulation. Ten 90 degree flexed knees were impacted frontally by a 20 kg pendulum with a rigid surface, a 450 psi (3.103 MPa) crush strength and a 100 psi (0.689 MPa) crush strength aluminum honeycomb padding and a 50 psi (0.345 MPa) crush strength paper honeycomb padding at a velocity of about five m/s. During rigid surface impact, a patella fracture and a split condylar fracture were observed. The split condylar fracture was generated by the patella pushing the condyles apart, based on a finite element model using the maximum principal stress as the injury criterion. In the case of the 450 psi aluminum honeycomb padding, the split condylar fracture still occurred, but no patella fractures were observed because the honeycomb provided a more uniform distribution of patella load. No bony fractures in the knee area occurred for impacts with a 50 psi paper honeycomb padding.
Technical Paper

The Influence of Surrogate Blood Vessels on the Impact Response of a Physical Model of the Brain

2004-11-01
2004-22-0012
Cerebral blood vessels are an integral part of the brain and may play a role in the response of the brain to impact. The purpose of this study was to quantify the effects of surrogate vessels on the deformation patterns of a physical model of the brain under various impact conditions. Silicone gel and tubing were used as surrogates for brain tissue and blood vessels, respectively. Two aluminum cylinders representing a coronal section of the brain were constructed. One cylinder was filled with silicone gel only, and the other was filled with silicone gel and silicone tubing arranged in the radial direction in the peripheral region. An array of markers was embedded in the gel in both cylinders to facilitate strain calculation via high-speed video analysis. Both cylinders were simultaneously subjected to a combination of linear and angular acceleration using a two-segment pendulum.
X