Refine Your Search

Topic

Search Results

Journal Article

Deterioration of B20 from Compression Ignition Engine Operation

2010-10-25
2010-01-2120
Biodiesel has been widely accepted as an alternative for fossil-derived diesel fuel for use in compression ignition (CI) engines. Poor oxidative stability and cold flow properties restrict the use of biodiesel beyond current B20 blend levels (20% biodiesel in 80% ULSD) for vehicle applications. Maintaining the properties of B20 as specified by ASTM D7476-08 is important because, once out of spec, B20 may cause injector coke formation, fuel filter plugging, increased exhaust emissions, and overall loss of engine performance. While the properties of fresh B20 may be within the specifications, under engine operating and longer storage conditions B20 could deteriorate. In a diesel engine, the fuel that goes to the injector and does not enter the cylinder is recycled back to the fuel tank. The re-circulated fuel returns to the fuel tank at an elevate temperature, which can cause thermal oxidation.
Journal Article

Properties of Butanol-Biodiesel-ULSD Ternary Mixtures

2010-10-25
2010-01-2133
The use of butanol as an alternative biofuel blend component for conventional diesel fuel has been under extensive investigation. However, some fuel properties such as cetane number and lubricity fall below the accepted values as described by the ASTM D 975 diesel specifications. Blending 10% butanol with #2 ULSD decreases the cetane number by 7% (from 41.6 to 39.0). At higher butanol blend levels, i.e., 20% v/v, the cetane number decrease cannot be compensated for; even with the addition of a 2000 ppm level commercial cetane improver. The decreased cetane number, or in other words, increased ignition delay, can be attributed to the increased blend level of low cetane butanol as well as the critical physical properties for better atomization of fuels during auto ignition such as viscosity. The kinematic viscosity dropped sharply with increasing butanol blend level up to 25 % v/v, then increased with further increase of butanol blend level.
Journal Article

Effects of Fuel Type on Dual SCR Aftertreatment for Lean NOx Reduction

2009-11-02
2009-01-2818
Global demand for alternative fuels to combat rising energy costs has sparked a renewed interest in catalysts that can effectively remediate NOx emissions resulting from combustion of a range of HC based fuels. Because many of these new engine technologies rely on lean operating environments to produce efficient power, the resulting emissions are also present in a lean atmosphere. While HCs are easily controlled in such environments, achieving high NOx conversion to N2 has continued to elude fully satisfactory solution. Until recently, most approaches have relied on catalysts with precious metals to either store NOx and subsequently release it as N2 under rich conditions, or use NH3 SCR catalysts with urea injection to reduce NOx under lean conditions. However, new improvements in Ag based technologies also look very promising for NOx reduction in lean environments.
Technical Paper

An Experimental Investigation on Aldehyde and Methane Emissions from Hydrous Ethanol and Gasoline Fueled SI Engine

2020-09-15
2020-01-2047
Use of ethanol as gasoline replacement can contribute to the reduction of nitrogen oxide (NOx) and carbon oxide (CO) emissions. Depending on ethanol production, significant reduction of greenhouse-gas emissions is possible. Concentration of certain species, such as unburned ethanol and acetaldehyde in the engine-out emissions are known to rise when ratio of ethanol to gasoline increases in the fuel. This research explores on hydrous ethanol fueled port-fuel injection (PFI) spark ignition (SI) engine emissions that contribute to photochemical formation of ozone, or so-called ozone precursors and the precursor of peroxyacetyl nitrates (PANs). The results are compared to engine operation on gasoline. Concentration obtained by FTIR gas analyzer, and mass-specific emissions of formaldehyde (HCHO), acetaldehyde (MeCHO) and methane (CH4) under two engine speed, four load and two spark advance settings are analyzed and presented.
Journal Article

Impact of A/F Ratio on Ion Current Features Using Spark Plug with Negative Polarity

2008-04-14
2008-01-1005
The increasing interest and requirement for improved electronic engine control during the last few decades, has led to the implementation of several different sensor technologies. The process of utilizing the spark plug as a combustion probe to monitor the different combustion related parameters such as knock, misfire, Ignition timing, and air-fuel ratio have been the subject of research for some time now. The air-fuel ratio is one of the most important engine operating parameters that has an impact on the combustion process, engine-out emissions, fuel economy, indicated mean effective pressure and exhaust gas composition and temperature. Furthermore, air-fuel ratio affects the ion produced during flame kernel initiation and post flame propagation. In this paper, an investigation is made to determine the effect of air-fuel ratio on ion current, using gasoline and methane under different spark plug designs and engine operating conditions.
Journal Article

Dual SCR Aftertreatment for Lean NOx Reduction

2009-04-20
2009-01-0277
Low-cost lean NOx aftertreatment is one of the main challenges facing high-efficiency gasoline and diesel engines operating with lean mixtures. While there are many candidate technologies, they all offer tradeoffs. We have investigated a multi-component Dual SCR aftertreatment system that is capable of obtaining NOx reduction efficiencies of greater than 90% under lean conditions, without the use of precious metals or urea injection into the exhaust. The Dual SCR approach here uses an Ag HC-SCR catalyst followed by an NH3-SCR catalyst. In bench reactor studies from 150 °C to 500 °C, we have found, for modest C/N ratios, that NOx reacts over the first catalyst to predominantly form nitrogen. In addition, it also forms ammonia in sufficient quantities to react on the second NH3-SCR catalyst to improve system performance. The operational window and the formation of NH3 are improved in the presence of small quantities of hydrogen (0.1–1.0%).
Journal Article

Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

2015-04-14
2015-01-0806
This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cotton seed biodiesel while assessing the engine's multi-fuel capability. Millions of tons of cotton seeds are available in the south of the US every year and approximately 10% of oil contained in the seeds can be extracted and transesterified. An investigation of combustion, emissions, and efficiency was performed using mass ratios of 20-50% cotton seed biodiesel (CS20 and CS50) in ultra-low sulfur diesel #2 (ULSD#2). Each investigation was run at 2400 rpm with loads of 4.2 - 6.3 IMEP and compared to the reference fuel ULDS#2. The ignition delay ranged in a narrow interval of 0.8-0.97ms across the blends and the heat release rate showed comparable values and trends for all fuel blends. The maximum volume averaged cylinder temperature increased by approximately 100K with each increase in 1 bar IMEP load but the maximum remained constants across the blends.
Technical Paper

Controlling Induction System Deposits in Flexible Fuel Vehicles Operating on E85

2007-10-29
2007-01-4071
With the wider use of biofuels in the marketplace, a program was conducted to study the deposit forming tendencies and performance of E85 (85% denatured ethanol and 15% gasoline) in a modern Flexible Fuel Vehicle (FFV). The test vehicle for this program was a 2006 General Motors Chevrolet Impala FFV equipped with a 3.5 liter V-6 powertrain. A series of 5,000 mile Chassis Dynamometer (CD) Intake Valve Deposits (IVD) and performance tests were conducted while operating the FFV on conventional (E0) regular unleaded gasoline and E85 to determine the deposit forming tendencies of both fuels. E85 test fuels were found to generate significantly higher levels of IVD than would have been predicted from the base gasoline component alone. The effects on the weight and composition of IVD due to a corrosion inhibitor and sulfates that were indigenous to one of the ethanols were also studied.
Technical Paper

Effect of Biodiesel (B-20) on Performance and Emissions in a Single Cylinder HSDI Diesel Engine

2008-04-14
2008-01-1401
The focus of this study is to determine the effect of using B-20 (a blend of 20% soybean methyl ester biodiesel and 80% ultra low sulfur diesel fuel) on the combustion process, performance and exhaust emissions in a High Speed Direct Injection (HSDI) diesel engine equipped with a common rail injection system. The engine was operated under simulated turbocharged conditions with 3-bar indicated mean effective pressure and 1500 rpm engine speed. The experiments covered a wide range of injection pressures and EGR rates. The rate of heat release trace has been analyzed in details to determine the effect of the properties of biodiesel on auto ignition and combustion processes and their impact on engine out emissions. The results and the conclusions are supported by a statistical analysis of data that provides a quantitative significance of the effects of the two fuels on engine out emissions.
Technical Paper

Impact of Biodiesel Emission Products from a Multi-Cylinder Direct Injection Diesel Engine on Particulate Filter Performance

2009-04-20
2009-01-1184
As diesel emission regulations continue to increase, the use of exhaust aftertreatment systems containing, for example the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) will become necessary in order to meet these stringent emission requirements. The addition of a DOC and DPF in conjunction with utilizing biodiesel fuels requires extensive research to study the implications that biodiesel blends have on emissions as well as to examine the effect on aftertreatment devices. The proceeding work discusses results from a 2006 VM Motori four-cylinder 2.8L direct injection diesel engine coupled with a diesel oxidation catalyst and catalyzed diesel particulate filter. Tests were done using ultra low sulfur diesel fuel blended with 20% choice white grease biodiesel fuel to evaluate the effects of biodiesel emission products on the performance and effectiveness of the aftertreatment devices and the effect of low temperature combustion modes.
Technical Paper

Effect of Different Biodiesel Blends on Autoignition, Combustion, Performance and Engine-Out Emissions in a Single Cylinder HSDI Diesel Engine

2009-04-20
2009-01-0489
The effects of different blends of Soybean Methyl Ester (biodiesel) and ultra low sulfur diesel (ULSD) fuel: B-00 (ULSD), B-20, B-40, B-60, B-80 and B-100 (biodiesel); on autoignition, combustion, performance, and engine out emissions of different species including particulate matter (PM) in the exhaust, were investigated in a single-cylinder, high speed direct injection (HSDI) diesel engine equipped with a common rail injection system. The engine was operated at 1500 rpm under simulated turbocharged conditions at 5 bar IMEP load with varied injection pressures at a medium swirl of 3.77 w ithout EGR. Analysis of test results was done to determine the role of biodiesel percentage in the fuel blend on the basic thermodynamic and combustion processes under fuel injection pressures ranging from 600 bar to 1200 bar.
Technical Paper

Simulation of Dual-Fuel-CI and Single-Fuel-SI Engine Combustion Fueled with CNG

2016-04-05
2016-01-0789
With increasing interest to reduce the dependency on gasoline and diesel, alternative energy source like compressed natural gas (CNG) is a viable option for internal combustion engines. Spark-ignited (SI) CNG engine is the simplest way to utilize CNG in engines, but direct injection (DI) Diesel-CNG dual-fuel engine is known to offer improvement in combustion efficiency and reduction in exhaust gases. Dual-fuel engine has characteristics similar to both SI engine and diesel engine which makes the combustion process more complex. This paper reports the computational fluid dynamics simulation of both DI dual-fuel compression ignition (CI) and SI CNG engines. In diesel-CNG dual-fuel engine simulations and comparison to experiments, attention was on ignition delay, transition from auto-ignition to flame propagation and heat released from the combustion of diesel and gaseous fuel, as well as relevant pollutants emissions.
Technical Paper

Numerical Investigation of Natural Gas-Diesel Dual Fuel Engine with End Gas Ignition

2018-04-03
2018-01-0199
The present study helps to understand the local combustion characteristics of PREmixed Mixture Ignition in the End-gas Region (PREMIER) combustion mode while using increasing amount of natural gas as a diesel substitute in conventional CI engine. In order to reduce NOx emission and diesel fuel consumption micro-pilot diesel injection in premixed natural gas-air mixture is a promising technique. New strategy has been employed to simulate dual fuel combustion which uses well established combustion models. Main focus of the simulation is at detection of an end gas ignition, and creating an unified modeling approach for dual fuel combustion. In this study G-equation flame propagation model is used with detailed chemistry in order to detect end-gas ignition in overall low temperature combustion. This combustion simulation model is validated using comparison with experimental data for dual fuel engine.
Technical Paper

Parallel-Through-The-Road Plug-In Hybrid Vehicle Design Development Process

2012-09-10
2012-01-1772
The Wayne State University (WSU) EcoCAR 2 Team designed the conversion of a GM donated 2013 Chevrolet Malibu to a Parallel-Through-The-Road (PTTR) Plug-In Hybrid vehicle within a 9 month timeframe. This fast prototyping project used the EcoCAR 2 Vehicle Development Process (EVDP). Various tradeoffs were made to meet all competition requirements and to make the vehicle as competitive as possible within budget, time and experience limitations. The chosen PTTR architecture, nicknamed by the team as “E2D2” (Ethanol-Electric Dual-Drivetrain), provides up to 35.7 electric only miles and a fuel economy of 60 miles per gallons gasoline equivalent (mpgge) or 3.96 liters gasoline equivalent (lge) per one hundred km. This is accomplished using an E85 engine-driven front traction system and a battery-electric-motors-driven rear traction system. The team developed the control system and designed the packaging and integration of all required components including the Energy Storage System (ESS).
Technical Paper

The Effectiveness of Oxygen in Preventing Embrittlement in Air Bag Inflators Containing Gaseous Hydrogen

2006-04-03
2006-01-1188
This study examines the effectiveness of gaseous oxygen at preventing embrittlement in steel associated with exposure to gaseous hydrogen under static loading conditions. Notched C-ring samples machined from 4340 steel and heat treated to HRC 51-53 were used to test the neutrality of an oxygen-hydrogen gas mixture similar to that which may be used as a generant in an air bag inflator. The 29 percent oxygen to hydrogen gas ratio of the gas mixture was found to be sufficient to protect the steel from hydrogen embrittlement under static loading conditions. This would indicate that any steel with a hardness of HRC 51 or lower would be safe to use in gas-based air bag inflators containing a oxygen to hydrogen gas ratio of 29 percent or higher.
Technical Paper

Estimation of Main Combustion Parameters from the Measured Instantaneous Crankshaft Speed

2013-04-08
2013-01-0326
The increased interest for using alternative fuels in modern diesel engines requires better combustion control to achieve safe and efficient operation with fuels characterized by different physical and chemical properties. Knowing the ignition delay and the cylinder peak pressure will allow adapting the injection strategy, mainly injection timing to maintain good engine efficiency when operating with different alternative fuels. The use of the measured instantaneous crankshaft speed to estimate peak cylinder pressure and ignition delay is very attractive because speed is already a parameter in the ECU of the engine. Based on models using powertrain dynamics, the paper presents the development of several techniques using the measured speed to estimate the main combustion parameters for single cylinder and four cylinder diesel engines.
Technical Paper

Spectral Analysis and Chemiluminescence Imaging of Hydrogen Addition to HSDI Diesel Combustion Under Conventional and Low-Temperature Conditions

2004-10-25
2004-01-2919
Late-injection low-temperature diesel combustion is found to further reduce NOx and soot simultaneously. The combustion phenomena and detail chemical kinetics are studied with high speed spray/combustion images and time-resolved spectroscopy analysis in a rapid compression machine (RCM) with a small bowl combustion chamber. High swirl and high EGR condition can be achieved in the RCM; variable injection pressure and injection timing is supplied by the high-pressure common-rail fuel injection system. Effect of small amount of premix hydrogen gas on diesel combustion is also studied in the RCM. A hydrogen injector is located in the upstream of air inlet for delivery small amount and premixed hydrogen gas into cylinder just before the compression stroke. The ignition delay is studied both from the pressure curves and the chemiluminescence images.
Technical Paper

DOE Guidelines on Hydrogen Safety

2005-04-11
2005-01-0010
Hydrogen is the most plentiful gas in the universe. However hydrogen never occurs naturally, always combines with other elements such as oxygen and carbon [1]. Hydrogen is the ultimate clean energy carrier once it is separated from other elements [11]. Moreover hydrogen can easily be generated from renewable energy sources. Hydrogen is also nonpolluting, and forms water as a harmless byproduct during the oxidation process. Safe practices in the production, storage, distribution, and use of hydrogen are essential components of a hydrogen economy [2]. A catastrophic failure in any hydrogen project could irreparably damage the entire transition strategy. The safety program element delineates the steps that the hydrogen, fuel cells & infrastructure technologies program shall ensure that all projects are performed in a safe manner.
Technical Paper

Correlation between Physical Properties and Autoignition Parameters of Alternate Fuels

1985-02-01
850266
The correlations between the physical properties and autoignition parameters of several alternate fuels have been examined. The fuels are DF-2 and its blends with petroleum derived fuels, coal derived fuels, shale derived fuels, high aromatic naphtha sun-flower oils, methanol and ethanol. A total of eighteen existing correlations are discussed. An emphasis is made on the suitability of each of the correlations for the development of electronic controls for diesel engines when run on alternate fuels. A new correlation has been developed between the cetane number of the fuels and its kinematic viscosity and specific gravity.
Technical Paper

E-85 Fuel Corrosivity: Effects on Port Fuel Injector Durability Performance

2007-10-29
2007-01-4072
A study was conducted to investigate the effects of commercial E-85 fuel properties on Port Fuel Injector (PFI) durability performance. E-85 corrosivity, not lubricity, was identified as the primary property affecting injector performance. Relatively high levels of water, chloride and organic acid contamination, detected in commercial E-85 fuels sampled in the U.S. in 2006, were the focus of the study. Analysis results and analytical techniques for determining contaminant levels in and corrosivity of commercial E-85 fuels are discussed. Studies were conducted with E-85 fuels formulated to represent worst-case field fuels. In addition to contamination with water, chloride and organic acids, fuels with various levels of a typical ethanol corrosion inhibitor were tested in the laboratory to measure the effects on E-85 corrosivity. The effects of these E-85 contaminants on injector durability performance were also evaluated.
X