Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Bootstrapping and Separable Monte Carlo Simulation Methods Tailored for Efficient Assessment of Probability of Failure of Structural Systems

2015-04-14
2015-01-0420
There is randomness in both the applied loads and the strength of systems. Therefore, to account for the uncertainty, the safety of the system must be quantified using its reliability. Monte Carlo Simulation (MCS) is widely used for probabilistic analysis because of its robustness. However, the high computational cost limits the accuracy of MCS. Smarslok et al. [2010] developed an improved sampling technique for reliability assessment called Separable Monte Carlo (SMC) that can significantly increase the accuracy of estimation without increasing the cost of sampling. However, this method was applied to time-invariant problems involving two random variables. This paper extends SMC to problems with multiple random variables and develops a novel method for estimation of the standard deviation of the probability of failure of a structure. The method is demonstrated and validated on reliability assessment of an offshore wind turbine under turbulent wind loads.
Journal Article

Effect of Water Absorption on Tensile and Fatigue Behaviors of Two Short Glass Fiber Reinforced Thermoplastics

2015-04-14
2015-01-0546
An experimental study was conducted to evaluate the effect of water absorption on tensile and fatigue behaviors of an impact-modified short glass fiber polyamide-6 and a short glass fiber polybutylene terephthalate. Specimens were prepared in the longitudinal and transverse directions with respect to the injection mold flow direction and immersed in water. Kinetics of water absorption was studied and found to follow the Fick's law. Tensile tests were performed at room temperature with specimens in the longitudinal and transverse directions and with various degrees of water absorption. Mathematical relations were developed to represent tensile properties as a function of water content. Load-controlled tension-tension fatigue tests were conducted in both longitudinal and transverse directions and correlations between tensile and fatigue strengths were obtained. Specimen fracture surfaces were also microscopically studied and mechanisms of tensile and fatigue failures were identified.
Journal Article

Fatigue Behavior of Neat and Short Glass Fiber Reinforced Polymers under Two-Step Loadings and Periodic Overloads

2016-04-05
2016-01-0373
An experimental study was conducted to evaluate the variable amplitude fatigue behavior of a neat polymer (polypropylene impact co-polymer) and a polymer composite made of polybutylene terephthalate (PBT) with 30 wt% short glass fibers. Fatigue tests were conducted on un-notched and notched specimens at room temperatures. Plate-type specimens were prepared in the transverse direction with respect to the injection mold flow direction and a circular hole was drilled in the center of notched specimens. Two-step loadings (high-low and low-high) tests at two damage ratio of 0.2 and 0.5 at stress ratios of R = 0.1 and -1 were conducted to investigate load sequence effects and prediction accuracy of the linear damage rule. Different behaviors were observed for unreinforced and short glass fiber reinforced polymers under the two-step loading tests.
Journal Article

Impact of Fuel Sprays on In-Cylinder Flow Length Scales in a Spark-Ignition Direct-Injection Engine

2017-03-28
2017-01-0618
The interaction of fuel sprays and in-cylinder flow in direct-injection engines is expected to alter kinetic energy and integral length scales at least during some portions of the engine cycle. High-speed particle image velocimetry was implemented in an optical four-valve, pent-roof spark-ignition direct-injection single-cylinder engine to quantify this effect. Non-firing motored engine tests were performed at 1300 RPM with and without fuel injection. Two fuel injection timings were investigated: injection in early intake stroke represents quasi-homogenous engine condition; and injection in mid compression stroke mimics the stratified combustion strategy. Two-dimensional crank angle resolved velocity fields were measured to examine the kinetic energy and integral length scale through critical portions of the engine cycle. Reynolds decomposition was applied on the obtained engine flow fields to extract the fluctuations as an indicator for the turbulent flow.
Journal Article

Value of Information for Comparing Dependent Repairable Assemblies and Systems

2018-04-03
2018-01-1103
This article presents an approach for comparing alternative repairable systems and calculating the value of information obtained by testing a specified number of such systems. More specifically, an approach is presented to determine the value of information that comes from field testing a specified number of systems in order to appropriately estimate the reliability metric associated with each of the respective repairable systems. Here the reliability of a repairable system will be measured by its failure rate. In support of the decision-making effort, the failure rate is translated into an expected utility based on a utility curve that represents the risk tolerance of the decision-maker. The algorithm calculates the change of the expected value of the decision with the sample size. The change in the value of the decision represents the value of information obtained from testing.
Technical Paper

Numerical Investigation of Snow Accumulation on a Sensor Surface of Autonomous Vehicle

2020-04-14
2020-01-0953
Autonomous Vehicles (AVs) operate based on image information and 3D maps generated by sensors like cameras, LIDARs and RADARs. This information is processed by the on-board processing units to provide the right actuation signals to drive the vehicle. For safe operation, these sensors should provide continuous high quality data to the processing units without interruption in all driving conditions like dust, rain, snow and any other adverse driving conditions. Any contamination on the sensor surface/lens due to rain droplets, snow, and other debris would result in adverse impact to the quality of data provided for sensor fusion and this could result in error states for autonomous driving. In particular, snow is a common contamination condition during driving that might block a sensor surface or camera lens. Predicting and preventing snow accumulation over the sensor surface of an AV is important to overcome this challenge.
Journal Article

An RBDO Method for Multiple Failure Region Problems using Probabilistic Reanalysis and Approximate Metamodels

2009-04-20
2009-01-0204
A Reliability-Based Design Optimization (RBDO) method for multiple failure regions is presented. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with an approximate global metamodel with local refinements. The latter serves as an indicator to determine the failure and safe regions. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing therefore, the use of a gradient-based optimizer. An “accurate-on-demand” metamodel is used in the PRRA that allows us to handle problems with multiple disjoint failure regions and potentially multiple most-probable points (MPP). The multiple failure regions are identified by using a clustering technique. A maximin “space-filling” sampling technique is used to construct the metamodel. A vibration absorber example highlights the potential of the proposed method.
Journal Article

Closed-Form Stress Intensity Factor Solutions for Spot Welds in Various Types of Specimens

2008-04-14
2008-01-1141
Closed-form stress intensity factor solutions at the critical locations of spot welds in four types of commonly used specimens are obtained based on elasticity theories and fracture mechanics. The loading conditions for spot welds in the central parts of four types of specimens are first examined. The resultant loads on the weld nugget and the self-balanced resultant loads on the lateral surface of the central parts of the specimens are then decomposed into various types of symmetric and anti-symmetric parts. Closed-form structural stress and stress intensity factor solutions for spot welds under various types of loading conditions are then adopted from a recent work of Lin and Pan to derive new closed-form stress intensity factor solutions at the critical locations of spot welds in the four types of specimens.
Journal Article

Managing the Computational Cost of Monte Carlo Simulation with Importance Sampling by Considering the Value of Information

2013-04-08
2013-01-0943
Importance Sampling is a popular method for reliability assessment. Although it is significantly more efficient than standard Monte Carlo simulation if a suitable sampling distribution is used, in many design problems it is too expensive. The authors have previously proposed a method to manage the computational cost in standard Monte Carlo simulation that views design as a choice among alternatives with uncertain reliabilities. Information from simulation has value only if it helps the designer make a better choice among the alternatives. This paper extends their method to Importance Sampling. First, the designer estimates the prior probability density functions of the reliabilities of the alternative designs and calculates the expected utility of the choice of the best design. Subsequently, the designer estimates the likelihood function of the probability of failure by performing an initial simulation with Importance Sampling.
Technical Paper

Prevention of Snow Accretion on Camera Lenses of Autonomous Vehicles

2020-04-14
2020-01-0105
With the rapid development of artificial intelligence, the autonomous vehicles (AV) have attracted considerable attention in the automotive industry. However, different factors negatively impact the adoption of the AVs, delaying their successful commercialization. Accretion of atmospheric icing, especially wet snow, on AV sensors causes blockage on their lenses, making them prone to lose their sight, in turn, increasing potential chances of accidents. In this study, two different designs are proposed in order to prevent snow accretion on the lenses of AVs via air flow across the lens surface. In both designs, lenses made of plain glass and superhydrophobic coated glass surfaces are tested. While some researchers have shown promise of water repellency on superhydrophobic surfaces, more snow accretion is observed on the superhydrophobic surfaces, when compared to the plain glass lenses.
Journal Article

Fatigue Behavior of Cast Iron Including Mean Stress Effects

2015-04-14
2015-01-0544
With improvements in casting technology, cast iron can be an alternative to steel in some applications due to its similar strength. One objective of this study was to analyze cast iron data obtained from the literature and evaluate predictive correlations between its tensile, microstructural, and fatigue properties. Reasonably good correlation of tensile strength and yield strength were found with hardness. However, fatigue strength could not be correlated with hardness or tensile properties. Another objective of this study was to evaluate tensile and compressive means stress effects on fatigue behavior of 120-90-02 ductile cast iron experimentally, as well as analytically by using predictive models. Mean stress levels were chosen such that R ratios in load-controlled tests were −7, −3, −1, 0, 1/3, 0.5, and 0.75. Modified Goodman, Smith-Watson-Topper, FKM and the Fatemi-Socie mean stress parameters were used to account for the mean stress effect on fatigue life.
Technical Paper

Experimental Determination of an Engine's Inertial Properties

2007-05-15
2007-01-2291
Determination of an engine's inertial properties is critical during vehicle dynamic analysis and the early stages of engine mounting system design. Traditionally, the inertia tensor can be determined by torsional pendulum method with a reasonable precision, while the center of gravity can be determined by placing it in a stable position on three scales with less accuracy. Other common experimental approaches include the use of frequency response functions. The difficulty of this method is to align the directions of the transducers mounted on various positions on the engine. In this paper, an experimental method to estimate an engine's inertia tensor and center of gravity is presented. The method utilizes the traditional torsional pendulum method, but with additional measurement data. With this method, the inertia tensor and center of gravity are estimated in a least squares sense.
Technical Paper

Improving Low Frequency Torsional Vibrations NVH Performance through Analysis and Test

2007-05-15
2007-01-2242
Low frequency torsional vibrations can be a significant source of objectionable vehicle vibrations and in-vehicle boom, especially with changes in engine operation required for improved fuel economy. These changes include lower torque converter lock-up speeds and cylinder deactivation. This paper has two objectives: 1) Examine the effect of increased torsional vibrations on vehicle NVH performance and ways to improve this performance early in the program using test and simulation techniques. The important design parameters affecting vehicle NVH performance will be identified, and the trade-offs required to produce an optimized design will be examined. Also, the relationship between torsional vibrations and mount excursions, will be examined. 2) Investigate the ability of simulation techniques to predict and improve torsional vibration NVH performance. Evaluate the accuracy of the analytical models by comparison to test results.
Technical Paper

Component Mode Synthesis for Substructures with Non-Matching Interfaces

2007-05-15
2007-01-2333
When performing vibration analysis of complex vehicle structures, it is often important to be able to evaluate the effects of design changes in one or more substructures (e.g., for design optimization). It may also be convenient to allow different components to be modeled independently by different groups or organizations. For both cases, it is inevitable that some substructures will have non-matching finite element meshes at the interface where they are physically connected. Thus, a key challenge is to be able to handle the dynamic assembly of components with non-matching meshes and the subsequent global vibration analysis in a systematic and efficient manner. To tackle this problem, the enhancement of component mode synthesis methods for handling finite element models partitioned into non-matching substructures is considered in this paper. Some existing methods are reviewed, and new methods are developed.
Technical Paper

Validation of Vehicle NVH Performance using Experimental Modal Testing and In-Vehicle Dynamic Measurements

2007-05-15
2007-01-2320
NVH targets for future vehicles are often defined by utilizing a competitive benchmarking vehicle in conjunction with an existing production and/or reference vehicle. Mode management of full vehicle modes is one of the most effective and significant NVH strategies to achieve such targets. NVH dynamic characteristics of a full vehicle can be assessed and quantified through experimental modal testing for determination of global body mode resonance frequency, damping property, and mode shape. Major body modes identified from full vehicle modal testing are primarily dominated by the vehicle's body-in-white structure. Therefore, an estimate of BIW modes from full vehicle modes becomes essential, when only full vehicle modes from experimental modal testing exist. Establishing BIW targets for future vehicles confines the fundamental NVH behavior of the full vehicle.
Technical Paper

A High Frequency Electronic Equalizer for EV and HEV Batteries

1997-08-06
972636
To avoid damage and maximize capacity, the voltages of the individual batteries in series connected packs should be equalized. Long term trickle charging is the traditional equalization method, but this is inconvenient for EVs and HEVs. Electronic equalizers also can be used to redistribute the charge amongst the batteries so that trickle charging is no longer necessary. A new type of high frequency electronic equalizer called the ramp converter uses soft switching techniques and a unique transformer design to minimize size and cost. Experimental results at two different power levels indicate performance similar to trickle charging but with a much shorter charging time.
Technical Paper

Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model

1998-02-23
980135
Direct injection of natural gas under high pressure conditions has emerged as a promising option for improving engine fuel economy and emissions. However, since the gaseous injection technology is new, limited experience exists as to the optimum configuration of the injection system and associated combustion chamber design. The present study uses KIVA-3 based, multidimensional modeling to improve the understanding and assist the optimization of the gaseous injection process. Compared to standard k-ε models, a Renormalization Group Theory (RNG) based k-ε model [1] has been found to be in better agreement with experiments in predicting gaseous penetration histories for both free and confined jet configurations. Hence, this validated RNG model is adopted here to perform computations in realistic engine geometries.
Technical Paper

An Efficient Re-Analysis Methodology for Vibration of Large-Scale Structures

2007-05-15
2007-01-2326
Finite element analysis is a well-established methodology in structural dynamics. However, optimization and/or probabilistic studies can be prohibitively expensive because they require repeated FE analyses of large models. Various reanalysis methods have been proposed in order to calculate efficiently the dynamic response of a structure after a baseline design has been modified, without recalculating the new response. The parametric reduced-order modeling (PROM) and the combined approximation (CA) methods are two re-analysis methods, which can handle large model parameter changes in a relatively efficient manner. Although both methods are promising by themselves, they can not handle large FE models with large numbers of DOF (e.g. 100,000) with a large number of design parameters (e.g. 50), which are common in practice. In this paper, the advantages and disadvantages of the PROM and CA methods are first discussed in detail.
Technical Paper

Validation of a Hybrid Finite Element Formulation for Mid-Frequency Analysis of Vehicle Structures

2007-05-15
2007-01-2303
The hybrid Finite Element Analysis (hybrid FEA) has been developed for performing structure-borne computations in automotive vehicle structures [1, 2 and 3]. The hybrid FEA method combines conventional FEA with Energy FEA (EFEA). Conventional FEA models are employed for modeling the behavior of the stiff members in a system. Appropriate damping and spring or mass elements are introduced in the connections between stiff and flexible members in order to capture the presence of the flexible members during the analyses of the stiff ones. The component mode synthesis method is combined with analytical solutions for determining the driving point conductance at joints between stiff and flexible members and for defining the properties of the concentrated elements which represent the flexible members when analyzing the stiff components.
Technical Paper

First and Second Law Analyses of a Naturally-Aspirated, Miller Cycle, SI Engine with Late Intake Valve Closure

1998-02-23
980889
A naturally-aspirated, Miller cycle, Spark-Ignition (SI) engine that controls output with variable intake valve closure is compared to a conventionally-throttled engine using computer simulation. Based on First and Second Law analyses, the two load control strategies are compared in detail through one thermodynamic cycle at light load conditions and over a wide range of loads at 2000 rpm. The Miller Cycle engine can use late intake valve closure (LIVC) to control indicated output down to 35% of the maximum, but requires supplemental throttling at lighter loads. The First Law analysis shows that the Miller cycle increases indicated thermal efficiency at light loads by as much as 6.3%, primarily due to reductions in pumping and compression work while heat transfer losses are comparable.
X