Refine Your Search

Topic

Search Results

Journal Article

Study on the Unsteady Heat Transfer of Engine Exhaust Manifold Based on the Analysis Method of Serial

2014-04-01
2014-01-1711
In order to predict the thermal fatigue life of the internal combustion engine exhaust manifold effectively, it was necessary to accurately obtain the unsteady heat transfer process between hot streams and exhaust manifold all the time. This paper began with the establishment of unsteady coupled heat transfer model by using serial coupling method of CFD and FEA numerical simulations, then the bidirectional thermal coupling analysis between fluid and structure was realized, as a result, the difficulty that the transient thermal boundary conditions were applied to the solid boundary was solved. What's more, the specific coupling mode, the physical quantities delivery method on the coupling interface and the surface mesh match were studied. On this basis, the differences between strong coupling method and portioned treatment for solving steady thermal stress numerical analysis were compared, and a more convenient and rapid method for solving static thermal stress was found.
Technical Paper

Impact Simulation and Structural Optimization of a Vehicle CFRP Engine Hood in terms of Pedestrian Safety

2020-04-14
2020-01-0626
With the rapidly developing automotive industry and stricter environmental protection laws and regulations, lightweight materials, advanced manufacturing processes and structural optimization methods are widely used in body design. Therefore, in order to evaluate and improve the pedestrian protection during a collision, this paper presents an impact simulation modeling and structural optimization method for a sport utility vehicle engine hood made of carbon fiber reinforced plastic (CFRP). Head injury criterion (HIC) was used to evaluate the performance of the hood in this regard. The inner panel and the outer panel of CFRP hood were discretized by shell elements in LS_DYNA. The Mat54-55 card was used to define the mechanical properties of the CFRP hood. In order to reduce the computational costs, just the parts contacted with the hood were modeled. The simulations were done in the prescribed 30 impact points.
Technical Paper

Real-time and Accurate Estimation of Road Slope for Intelligent Speed Planning System of Commercial Vehicle

2020-04-14
2020-01-0115
In the intelligent speed planning system, real-time estimation of road slope is the key to calculate slope resistance and realize the vehicles’ active safety control. However, if the road slope is measured by the sensor while the commercial vehicle is driving, the vibration of the vehicle body will affect its measurement accuracy. Therefore, the relevant algorithm is used to estimate the real-time slope of the road when the commercial vehicle is driving. At present, many domestic and foreign scholars have analyzed and tested the estimation of road slope by the least square method or Kalman filter algorithm. Although the two methods both can achieve the estimation, the real-time performance and accuracy still need to be improved. In this paper, for traditional fuel commercial vehicle, the Kalman filter algorithm based on the kinematics and the extended Kalman filter algorithm based on the longitudinal dynamics are respectively used to estimate the road slope.
Technical Paper

Decision Making and Trajectory Planning of Intelligent Vehicle’ s Lane-Changing Behavior on Highways under Multi-Objective Constrains

2020-04-14
2020-01-0124
Discretionary lane changing is commonly seen in highway driving. Intelligent vehicles are expected to change lanes discretionarily for better driving experience and higher traffic efficiency. This study proposed to optimize the decision-making and trajectory-planning process so that intelligent vehicles made lane changes not only with driving safety taken into account, but also with the goal to improve driving comfort as well as to meet the driver’ s expectation. The mechanism of how various factors contribute to the driver’s intention to change lanes was studied by carrying out a series of driving simulation experiments, and a Lane-Changing Intention Generation (LCIG) model based on Bi-directional Long Short-Term Memory (Bi-LSTM) was proposed.
Technical Paper

Research on the Performance of Battery Thermal Management System Based on Optimized Arrangement of Flat Plate Heat Pipes

2020-04-14
2020-01-0162
The thermal management system is essential for the safe and long-term operation of the power battery. The temperature difference between the individual cells exceeds the acceleration of the battery performance, which leads to battery out of use and affects the performance of the vehicle. Compared with the low heat transfer coefficient of the air-cooling system, the complex structure of the liquid-cooling system and the large quality of phase change material system, the heat pipe has high thermal conductivity, strong isothermal performance and light weight, it’s an efficient cooling element that can be used for thermal management. In this study, the flat plate heat pipe(FPHP) is used to manage the temperature of the battery, through experiments, the optimized placement of the flat heat pipe is obtained.
Technical Paper

A Novel Velocity Planner for Autonomous Vehicle Considering Human Driver’s Habits

2020-04-14
2020-01-0133
In automatic driving application, the velocity planner can be considered as a key factor to ensure the safety and comfort. One of the most important tasks of the velocity planner is to simulate the velocity characteristics of human drivers. In this paper, two Driver In-the-Loop (DIL) experiments are designed to explain velocity characteristics of human drivers. In the first experiment, static obstacles are placed on both sides of the straight road to shorten the cross range that vehicles can driver across. Moreover, different cross ranges are set to study the influence of the steering wheel error. In the second experiment, velocity characteristics are investigated under the condition of different road widths and curvatures in a U-turn road contour. In both tests, different drivers’ preview behavior is analyzed through the operation of throttle, braking, and steering.
Journal Article

Research on Driving Posture Comfort Based on Relation between Drivers' Joint Angles and Joint Torques

2014-04-01
2014-01-0460
Driving comfort is one of the most important indexes for automobile comfort. Driving posture comfort is closely related to the drivers' joint angles and joint torques. In present research, a new method is proposed to identify the most comfortable driving posture based on studying the relation between drivers' joint angles and joint torques. In order to truly reflect a driving situation, the accurate human driving model of 50 percent of the size of Chinese male is established according to the human body database of RAMSIS firstly. Biomechanical model based on accurate human driving model is also developed to analyze and obtain dynamic equations of human driving model by employing Kane method. The joint torque-angle curves of drivers' upper and lower limbs during holding wheel or pedal operation can be obtained through dynamic simulation in the MATLAB. Through curve-fitting analysis, the minimum joint torque of a driver' limb and the optimal joint angel can be found.
Technical Paper

Automatic Parking Control Algorithms and Simulation Research Based on Fuzzy Controller

2020-04-14
2020-01-0135
With the increase of car ownership and the complex and crowded parking environment, it is difficult for drivers to complete the parking operation quickly and accurately, which may cause traffic accidents such as vehicle collisions and road jams because of poor parking skills. The emergence of an automatic parking system can help drivers park safely and reduce the occurrence of safety accidents. In this paper, the neural network identifier on the control method of an adaptive integral derivative of a neural network is proposed for an automatic parallel parking system with front-wheel steering is studied by using MATLAB/Simulink environment, and the simulation is carried out. Firstly, according to vehicle parameters and obstacle avoidance constraints, the minimum parking space, and parking starting position are calculated. Meanwhile, the path planning of parallel parking spaces is carried out by quintic polynomial.
Technical Paper

Effect of Stator Surface Area on Braking Torque and Wall Heat Dissipation of Magnetorheological Fluid Retarder

2020-04-14
2020-01-0937
Magnetorheological fluid (MRF) is used as the transmission medium of the hydraulic retarder. The rheological properties are regulated by changing the magnetic field to achieve accurate control of the retarder's braking torque. Under the action of the external magnetic field, the flow structure and performance of the MRF retarder will be changed in a short time. The apparent viscosity coefficient increases by several orders of magnitude, the fluidity deteriorates and the heat generated by the brake cannot be transferred through the liquid circulation, which will affect the braking torque of the retarder. Changing the surface area of the stator also has an influence on the braking torque of the retarder and the wall heat dissipation. In this study, the relationship between the braking torque of the MRF retarder and the stator surface area of the retarder was analyzed.
Technical Paper

Driver Distraction Detection with a Two-stream Convolutional Neural Network

2020-04-14
2020-01-1039
Driver distraction detection is crucial to driving safety when autonomous vehicles are co-piloted. Recognizing drivers’ behaviors that are highly related with distraction from real-time video stream is widely acknowledged as an effective approach mainly due to its non-intrusiveness. In recently years, deep learning neural networks have been adopted to by-pass the procedure of designing features artificially, which used to be the major downside of computer-vision based approaches. However, the detection accuracy and generalization ability is still not satisfying since most deep learning models extracts only spatial information contained in images. This research develops a driver distraction model based on a two-stream, spatial and temporal, convolutional neural network (CNN).
Technical Paper

Research on Thermal Management of Magnetorheological Fluid Retarder Based on Phase Change Principle

2020-04-14
2020-01-0948
In order to avoid the braking recession on heavy commercial vehicles caused by the long-distance continuous braking of the main brake, the hydraulic retarder is widely used as an important brake auxiliary device in various heavy commercial vehicles to improve the vehicle safety. However, the hydraulic retarder not only has the advantages of large braking torque and good stability, but also has the disadvantages of poor retarding ability at low rotating speed, braking lag and difficulty in accurately controlling the braking torque. This paper introduces a new type of hydraulic retarder. The new retarder replaces the oil in the retarder with magnetorheological fluid and applies a magnetic field in the retarder arrangement space, so that slows down the vehicle by using the rheological properties of the magnetorheological fluid under the magnetic field.
Technical Paper

Analysis and Evaluation of the Urban Bus Driving Cycle on Fuel Economy

2007-07-23
2007-01-2073
On-road testing of driving performance of the urban bus was carried out, and a representative urban bus driving cycle was developed after on-road testing, according to the test results. Then, the vehicle simulation software AVL CRUISE was used to simulate the dynamic behavior of the urban bus. It involves the simulation of complete drive train system and the driver behavior. The model is validated by comparing the results of the simulation to the results of the field test. Then the developed driving cycle is evaluated by fuel consumption resulted from the simulation and engine bench test on fuel economy.
Technical Paper

Intelligent Control of Metal-belt CVT Based on Fuzzy Logic

2009-04-20
2009-01-1535
Operating level of a metal-belt CVT mainly rest with the ECU. Conventional control strategies which were obtained from tests or PID controller can not correspond to the driver’s intention or provide various driving environments. It is considered that control targets of metal-belt CVT could be distinguished by a speed ratio, line pressure and starting element till now. Running performance of automobile with a CVT mainly depends on the speed ratio control. An adapted fuzzy logic ratio control algorithm is suggested and optimized. A throttle position and its changing rate will be inputs of the FLC to meet the driver’s intention and make the intelligent control come true. A fuzzy logic line pressure control algorithm is also suggested and optimized corresponding to the complicated high line pressure control.
Technical Paper

Avoiding Accelerating Incorrectly While Steering with CAN Networks

2004-03-08
2004-01-0200
People, vehicles and circumstances are the three key factors, which affect transportation systems. Offering more information to the driver and helping him observe on all sides so that he can make decisions correctly are of great importance for reducing accidents. According to the present traffic regulations, in this paper we focus on the rules and process used during steering and proposed to implement them in a car information central control system based on CAN. A comparison of the brake time between brake by driver and by radars revealed the great interest of using ECUs connected by CAN network.
Technical Paper

Study on Diesel-LPG Dual Fuel Engines

2001-09-24
2001-01-3679
A new type of dual fuel supply system has been developed. This system is able to economically convert conventional diesel engines into dual-fuel engines like LPG/Diesel engines and CNG/Diesel engines, which are capable of either using single diesel fuel or using dual-fuel including both diesel and CNG fuel or both diesel and LPG fuel. These diesel-LPG engines have been applied to the diesel buses in the public transportation of Guangzhou city, one of the biggest cities in China, owning to their low soot emissions, excellent operating performances and extremely low cost as well. Compared with the diesel baseline engine, it was found that there were a significant reduction in soot emission and an improvement of the fuel consumption with the diesel-LPG engine. Also the strategy on LPG content is discussed in order to meet the demands for soot emission, fuel economy, transient performance and output power at the same time.
Technical Paper

Energy Consumption of Passenger Compartment Auxiliary Cooling System Based on Peltier Effect

2017-03-28
2017-01-0155
The closed cabin temperature is anticipated to be cooled down when it is a bit hot inside the driving car. The traditional air-condition lowers the cabin temperature by frequently switching the status of the compressor, which increases the engine’s parasitic power and shortens the compressor’s service-life. The semiconductor auxiliary cooling system with the properties of no moving parts, high control precision and quick response has the potential to assist the on-board air-condition in modulating the cabin temperature with relative small ranges. Little temperature differences between the cabin and the outside environment means that the system energy consumption to ensure the occupant comfort is relatively low and the inefficiency could be made up by the renewable energy source.
Technical Paper

Over-the-Horizon Safety Speed Warning System for Heavy-Duty Vehicle in Mountain Areas

2017-03-28
2017-01-0091
The mountainous roads are rugged and complex, so that the driver can not make accurate judgments on dangerous road conditions. In addition, most heavy vehicles have characteristics of large weight and high center of gravity. The two factors above have caused most of the car accidents in mountain areas. A research shows that 90% of car accidents can be avoided if drivers can respond within 2-3 seconds before the accidents happen. This paper proposes a speed warning scheme for heavy-duty vehicle over the horizon in mountainous area, which can give the drivers enough time to respond to the danger. In the early warning aspect, this system combines the front road information, the vehicle characteristics and real-time information obtained from the vehicle, calculates and forecasts the danger that may happen over the horizon ahead of time, and prompts the driver to control the vehicle speed.
Technical Paper

Color Variable Speed Limit Sign Visibility for the Freeway Exit Driving Safety

2017-03-28
2017-01-0085
Typical vehicle speed deceleration occurs at the freeway exit due to the driving direction change. Well conducting the driver to control the velocity could enhance the vehicle maneuverability and give drivers more response time when running into potential dangerous conditions. The freeway exit speed limit sign (ESLS) is an effect way to remind the driver to slow down the vehicle. The ESLS visibility is significant to guarantee the driving safety. This research focuses on the color variable ESLS system, which is placed at the same location with the traditional speed limit sign. With this system, the driver could receive the updated speed limit recommendation in advance and without distraction produced by eyes contract change over the dashboard and the front sight. First, the mathematical model of the drivetrain and the engine brake is built for typical motor vehicles. The vehicle braking characteristics with various initial speeds in the deceleration area are studied.
Technical Paper

Safe Travelling Speed of Commercial Vehicles on Curves Based on Vehicle-Road Collaboration

2017-03-28
2017-01-0080
Mountain road winding and bumpy, traffic accidents caused by speeding frequently happened, mainly concentrated on curves. The present curve warning system research are based on Charge-coupled Device, but the existing obstacles, weather , driving at night and road conditions directly affect the accuracy and applicability. The research is of predictability to identify the curves based on the geographic information and can told the driver road information and safety speed ahead of the road according to the commercial vehicle characteristic of load, and the characteristics of the mass center to reduce the incidence of accidents. In this paper, the main research contents include: to estimate forward bend curvature through the node classification method based on the digital map.
Technical Paper

The Tunnel Climbing Acceleration Reminder System Based on Vehicle Dynamics

2017-03-28
2017-01-0079
Road traffic congestion sometimes happens at tunnel exit even without high traffic flow. One reason is that the deceleration process is imperceptible when the vehicle is driving to the tunnel exit with gradual upgrade slopes. Nowadays regulations are more concentrated in transport sectors, and control measures are applied to vehicles through the tunnel. This process is careless of vehicles’ specific characteristics and easily distract the driver attention. In this paper, a tunnel climbing acceleration reminder system is introduced. When the speed drop is detected and the analysis show this is due to the driver's unconscious behavior, the system will remind the driver to speed up. Based on the dynamic model and the tunnel properties, the relationship between the throttle opening degrees and the duration with the speed change is studied. Then, the engine braking is considered for the variation of speeds and slopes.
X