Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

ISS Potable Water Sampling and Chemical Analysis: Expeditions 4 & 5

2003-07-07
2003-01-2401
The International Space Station (ISS) drinking water supply consists of water recovered from humidity condensate, water transferred from Shuttle, and groundwater supplied from Russia. The water is dispensed from both the stored water dispensing system (SVO-ZV) and the condensate recovery system (SRV-K) galley. Teflon bags are used periodically to collect potable water samples, which are then transferred to Shuttle for return to Earth. The results from analyses of these samples are used to monitor the potability of the drinking water on board and evaluate the efficiency of the water recovery system. This report provides results from detailed analyses of samples of ISS recovered potable water, Shuttle-supplied water, and ground-supplied water taken during ISS Expeditions 4 and 5. During Expedition 4, processing of U.S. Lab condensate through the Russian condensate recovery system was initiated. Results indicate water recovered from both Service Module and U.S.
Technical Paper

Quality of Water Supplied by Shuttle to ISS

2002-07-15
2002-01-2532
The water supply for the International Space Station (ISS) consists partially of excess fuel-cell water that is treated on the Shuttle and stored on ISS in 44 L collapsible Contingency Water Containers (CWCs). Iodine is removed from the source water, and silver biocide and mineral concentrates are added by the crewmember while the CWCs are filled. Potable (mineralized) CWCs are earmarked for drinking and food hydration, and technical (non-mineralized) CWCs are reserved for waste system flushing and electrolytic oxygen generation. Representative samples are collected in Teflon® bags and returned to Earth for chemical analysis. The parameters typically measured include pH, conductivity, total organic carbon, iodine, silver, calcium, magnesium, fluoride, trace metals, formate and alcohols. The Nylon monomer caprolactam is also measured and tracked since it is known to leach slowly out of the plastic CWC bladder material.
Technical Paper

Chemical Characterization of U.S. Lab Condensate

2006-07-17
2006-01-2016
Approximately 50% of the water consumed by International Space Station crewmembers is water recovered from cabin humidity condensate. Condensing heat exchangers in the Russian Service Module (SM) and the United States On-Orbit Segment (USOS) are used to control cabin humidity levels. In the SM, humidity condensate flows directly from the heat exchanger to a water recovery system. In the USOS, a metal bellows tank located in the US Laboratory Module (LAB) collects and stores condensate, which is periodically off-loaded in about 20-liter batches to Contingency Water Containers (CWCs). The CWCs can then be transferred to the SM and connected to a Condensate Feed Unit that pumps the condensate from the CWCs into the water recovery system for processing. Samples of the condensate in the tank are collected during the off-loads and returned to Earth for analyses.
Technical Paper

Chemical Analysis and Water Recovery Testing of Shuttle-Mir Humidity Condensate

1999-07-12
1999-01-2029
Humidity condensate collected and processed in-flight is an important component of a space station drinking water supply. Water recovery systems in general are designed to handle finite concentrations of specific chemical components. Previous analyses of condensate derived from spacecraft and ground sources showed considerable variation in composition. Consequently, an investigation was conducted to collect condensate on the Shuttle while the vehicle was docked to Mir, and return the condensate to Earth for testing. This scenario emulates an early ISS configuration during a Shuttle docking, because the atmospheres intermix during docking and the condensate composition should reflect that. During the STS-89 and STS-91 flights, a total volume of 50 liters of condensate was collected and returned. Inorganic and organic chemical analyses were performed on aliquots of the fluid.
X