Refine Your Search

Topic

Author

Search Results

Technical Paper

Liquid Metering Centrifuge Sticks (LMCS): A Centrifugal Approach to Metering Known Sample Volumes for Colorimetric Solid Phase Extraction (C-SPE)

2007-07-09
2007-01-3216
Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements.
Technical Paper

Colorimetric-Solid Phase Extraction Technology for Water Quality Monitoring: Evaluation of C-SPE and Debubbling Methods in Microgravity

2007-07-09
2007-01-3217
Colorimetric-solid phase extraction (C-SPE) is being developed as a method for in-flight monitoring of spacecraft water quality. C-SPE is based on measuring the change in the diffuse reflectance spectrum of indicator disks following exposure to a water sample. Previous microgravity testing has shown that air bubbles suspended in water samples can cause uncertainty in the volume of liquid passed through the disks, leading to errors in the determination of water quality parameter concentrations. We report here the results of a recent series of C-9 microgravity experiments designed to evaluate manual manipulation as a means to collect bubble-free water samples of specified volumes from water sample bags containing up to 47% air. The effectiveness of manual manipulation was verified by comparing the results from C-SPE analyses of silver(I) and iodine performed in-flight using samples collected and debubbled in microgravity to those performed on-ground using bubble-free samples.
Technical Paper

Results of the Risk Mitigation Experiment for the Volatile Organic Analyzer

1998-07-13
981745
A volatile organic analyzer (VOA), developed by Graseby Dynamics, Ltd. under contract to the Johnson Space Center Toxicology Laboratory, is the core instrument for trace contaminant monitoring on the International Space Station (ISS). The VOA will allow trace amounts of target compounds to be analyzed in real time so that ISS air quality can be assessed in nominal and contingency situations. Recent events on Mir have underscored the need for real-time analysis of air quality so that the crew can respond promptly during off-nominal conditions. The VOA, which is based on gas chromatography/ion mobility spectrometry, is the first spacecraft instrument to be used for such a complex task. Consequently, a risk mitigation experiment (VOA/RME) was flown to assess the performance and engineering aspects of the VOA. This paper is a review of VOA/RME results from the STS-81 and STS-89 flights and their implications for the ISS VOA design and operations.
Technical Paper

Development of Passive Sampling Regime in Royal Navy Submarine Atmospheres for Retrospective Analysis of Organic Compounds

2008-06-29
2008-01-2129
Sampling and retrospective analysis of contaminant volatile organic compounds (VOCs) in submarine atmospheres is essential to demonstrate compliance with exposure standards, evaluate trends, and determine new compounds introduced into the atmosphere of a submarine. Currently atmospheric VOCs are sampled using Tenax™ sorbent tubes and analysed retrospectively. In order to evaluate the efficacy of the sampling regime, submarine trials were conducted using the Volatile Organics Analyzer (VOA), borrowed from NASA. Using the results from these trials further investigative work was carried out to develop the sampling and retrospective analysis regime including passive samplers. This paper will detail findings from VOA trials, and the development of a new passive sampling regime utilising various sorption tubes.
Technical Paper

A Portable Unit to Measure Metabolic Rate during Shirtsleeve and Suited EVA Tests

2008-06-29
2008-01-2110
This paper presents a new portable metabolic device (PUMA-Portable Unit for Metabolic Analysis) developed at the NASA Glenn Research Center. PUMA is a battery-operated, wearable unit to measure metabolic rate (minute ventilation, oxygen up-take, carbon dioxide output and heart rate) in a clinical setting, in the field or in remote, extreme environments. The critical sensors in PUMA are located close to the mouth and sampled at 10 Hz to allow intra-breath measurements. PUMA transmits metabolic data wirelessly to a remote computer for data analysis and storage. In addition to it's primary function as a portable metabolic measurement device, the PUMA sensors can also be easily adapted to other applications, including future EVA suits where they could measure metabolic rate for a suited crew member. The first section of the paper discusses the specific technologies and innovations of PUMA.
Technical Paper

A Test Plan for Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

2008-06-29
2008-01-2113
The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source.
Technical Paper

Archiving Trace Organic Contaminants in Spacecraft Water

2003-07-07
2003-01-2408
One of the long-standing concerns in space exploration is the presence of trace organic contaminants in recycled spacecraft water supplies. At present, water samples on the International Space Station (ISS) are collected at regular intervals, stored in Teflon™-lined containers, and returned to Earth for characterization. This approach, while effective in defining water quality, has several notable problems. First, this method of archiving removes a significant volume of the ISS water supply. Second, the archived water consumes valuable cargo space in returning Shuttle and Soyuz vehicles. Third, the organic contaminants present in the collected samples may degrade upon extended storage. The latter problem clearly compromises sample integrity. Upon return to Earth, sample degradation is minimized by refrigeration. Due to present resource constraints, however, refrigeration is not a viable option in space.
Technical Paper

Rapid Determination of Biocide Concentrations Using Colorimetric Solid Phase Extraction (C-SPE): Results from Microgravity Testing

2003-07-07
2003-01-2406
A sorption-spectrophotometric platform for the concentration and subsequent quantification of biocides in spacecraft drinking water is described. This methodology, termed Colorimetric Solid Phase Extraction (C-SPE), is based on the extraction of analytes onto a membrane impregnated with a colorimetric reagent. Quantification of the extracted analytes is accomplished by interrogating the surface of the membrane with a commercially available diffuse reflectance spectrophotometer. Ground-based experiments have shown that C-SPE is a viable means to determine biocide concentrations in the range commonly found in water samples from the Space Shuttle and the International Space Station (ISS). This paper details efforts to advance C-SPE closer to space flight qualification and ISS implementation, starting with the modification of the ground based biocide detection platform to simplify operation in a microgravity environment.
Technical Paper

ISS Potable Water Sampling and Chemical Analysis: Expeditions 4 & 5

2003-07-07
2003-01-2401
The International Space Station (ISS) drinking water supply consists of water recovered from humidity condensate, water transferred from Shuttle, and groundwater supplied from Russia. The water is dispensed from both the stored water dispensing system (SVO-ZV) and the condensate recovery system (SRV-K) galley. Teflon bags are used periodically to collect potable water samples, which are then transferred to Shuttle for return to Earth. The results from analyses of these samples are used to monitor the potability of the drinking water on board and evaluate the efficiency of the water recovery system. This report provides results from detailed analyses of samples of ISS recovered potable water, Shuttle-supplied water, and ground-supplied water taken during ISS Expeditions 4 and 5. During Expedition 4, processing of U.S. Lab condensate through the Russian condensate recovery system was initiated. Results indicate water recovered from both Service Module and U.S.
Technical Paper

Phase VI Advanced EVA Glove Development and Certification for the International Space Station

2001-07-09
2001-01-2163
Since the early 1980’s, the Shuttle Extra Vehicular Activity (EVA) glove design has evolved to meet the challenge of space based tasks. These tasks have typically been satellite retrieval and repair or EVA based flight experiments. With the start of the International Space Station (ISS) assembly, the number of EVA based missions is increasing far beyond what has been required in the past; this has commonly been referred to as the “Wall of EVA’s”. To meet this challenge, it was determined that the evolution of the current glove design would not meet future mission objectives. Instead, a revolution in glove design was needed to create a high performance tool that would effectively increase crewmember mission efficiency. The results of this effort have led to the design, certification and implementation of the Phase VI EVA glove into the Shuttle flight program.
Technical Paper

Identification of an Organic Impurity Leaching from a Prototype ISS Water Container

2001-07-09
2001-01-2125
Collapsible bladder tanks called Contingency Water Containers (CWCs) have been used to transfer water from the Shuttle to the Mir and the International Space Station (ISS). Because their use as potable water storage on the ISS is planned for years, efforts are underway to improve the containers, including the evaluation of new materials. Combitherm®, a multi-layer plastic film, is a material under evaluation for use as the CWC bag material. It consists of layers of linear low density polyethylene, ethylene-vinyl alcohol copolymer, nylon, and a solvent- free adhesive layer. Long term studies of the quality of water stored in Combitherm bladders indicate a gradual but steady increase in the total organic carbon value. This suggests a leaching or breakdown of an organic component of the Combitherm.
Technical Paper

A Rapid Method for Determining Biocide Concentration in a Spacecraft Water Supply

2002-07-15
2002-01-2535
Monitoring and maintaining biocide concentrations is vital for assuring safe drinking water both in ground and spacecraft applications. Currently, there are no available methods to measure biocide concentrations (i.e., silver ion or iodine) on-orbit. Sensitive, rapid, simple colorimetric methods for the determination of silver(I) and iodine are described. The apparatus consists of a 13-mm extraction disk (Empore® membrane) impregnated with a colorimetric reagent and placed in a plastic filter holder. A Luer tip syringe containing the aqueous sample is attached to the holder and 10 mL of sample is forced through the disk in ∼30 s. Silver(I) is retained by a disk impregnated with 5-(p-dimethylaminobenzylidene)-rhodanine (DMABR), and iodine is retained as a yellow complex on a membrane impregnated with polyvinylpyrrolidone (PVP).
Technical Paper

Quality of Water Supplied by Shuttle to ISS

2002-07-15
2002-01-2532
The water supply for the International Space Station (ISS) consists partially of excess fuel-cell water that is treated on the Shuttle and stored on ISS in 44 L collapsible Contingency Water Containers (CWCs). Iodine is removed from the source water, and silver biocide and mineral concentrates are added by the crewmember while the CWCs are filled. Potable (mineralized) CWCs are earmarked for drinking and food hydration, and technical (non-mineralized) CWCs are reserved for waste system flushing and electrolytic oxygen generation. Representative samples are collected in Teflon® bags and returned to Earth for chemical analysis. The parameters typically measured include pH, conductivity, total organic carbon, iodine, silver, calcium, magnesium, fluoride, trace metals, formate and alcohols. The Nylon monomer caprolactam is also measured and tracked since it is known to leach slowly out of the plastic CWC bladder material.
Technical Paper

Shuttle Extravehicular Mobility Unit (EMU) Operational Enhancements

1990-07-01
901317
The NASA/Industry Shuttle EMU team initiated an EMU program activity in 1988 to reduce EMU criticality 1 failure causes, reduce ground operations costs, and also to enhance on-orbit operational Extravehicular Activity (EVA) capability. Replacement/refurbishment hardware is being developed, certified, and delivered. System level life extention testing is expected to extend the Life Limited Components replacement schedule. Goals of this program are to achieve a 25 percent reduction in ground turn-around man-hours and processing time between missions and to extend Extravehicular Activity (EVA) on-orbit capabilities expected to be necessary to support Space Station Freedom assembly and contingency EVA operations. This paper identifies and describes tasks being implemented with expected benefits to NASA-manned spaceflight programs.
Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Benefits of an EMU Glove Active Heating System

1995-07-01
951549
Recent Shuttle extravehicular activity (EVA) missions have shown the need for improved thermal performance in Space Suit Assembly (SSA) gloves to successfully complete assembly of the International Space Station (ISS). Passive thermal design improvements have been successfully incorporated, however, additional improvements are still possible. An Active Heated Glove Assembly was developed to aid in the prevention of cold hands and fingers during periods of rest and low metabolic activity. Environmental vacuum tests have shown that the system accomplishes its goals and measurably increases glove thermal performance.
Technical Paper

Recent Advances in the Development of Spacesuit Gloves

1996-07-01
961424
The continuous development of Extravehicular Activity (EVA) spacesuit gloves has lead to an effective solution for performing EVA to date. Some aspects of the current EVA gloves have been noted to affect crew performance in the form of limited dexterity and accelerated onset of fatigue from high torque mobility joints. This in conjunction with the fact that more frequent and complex EVAs will occur with the fabrication and occupation of Space Station Freedom, suggest the need for improved spacesuit gloves. Therefore, several efforts have been conducted in the recent past to enhance the performance of the spacesuit glove. The following is a description of the work performed in these programs and their impact on the design and performance of EVA equipment. In the late 1980's and early 1990's, a spacesuit glove design was developed that focused on building a more conformal glove with improved mobility joints that could function well at a higher operating pressure.
Technical Paper

Inline Monitoring and Evaluation of Inorganic Gases from a Nitrification Membrane Bioreactor

2005-07-11
2005-01-3021
Integration of the water and air treatment systems in confined habitats for extended duration space missions will require characterization of the constituents in the gases produced by biological water processors. A membrane bioreactor was constructed to accomplish nitrification as part of a denitrification-nitrification biological water processor to treat a simulated early planetary base wastewater. A gas chromatograph was installed inline to the influent and effluent gas lines of the membrane bioreactor to monitor nitrogen, oxygen, carbon dioxide and nitrous oxide. The inline monitoring system enabled sampling of gas effluent from the lumen of the membranes and from a gas-liquid separator. Mass flow of the gas streams was also measured to enable calculation of the mass flow rates of the four inorganic gases.
Technical Paper

Application of Colorimetric Solid Phase Extraction (C-SPE) to Monitoring Nickel(II) and Lead(II) in Spacecraft Water Supplies

2004-07-19
2004-01-2539
Archived water samples collected on the International Space Station (ISS) and returned to Earth for analysis have, in a few instances, contained trace levels of heavy metals. Building on our previous advances using Colorimetric Solid Phase Extraction (C-SPE) as a biocide monitoring technique [1, 2], we are devising methods for the low level monitoring of nickel(II), lead(II) and other heavy metals. C-SPE is a sorption-spectrophotometric platform based on the extraction of analytes onto a membrane impregnated with a colorimetric reagent that are then quantified on the surface of the membrane using a diffuse reflectance spectrophotometer. Along these lines, we have analyzed nickel(II) via complexation with dimethylglyoxime (DMG) and begun to examine the analysis of lead(II) by its reaction with 2,5-dimercapto-1, 3, 4-thiadiazole (DMTD) and 4-(2-pyridylazo)-resorcinol (PAR).
Technical Paper

Comparison of Shortened and Standard Liquid Cooling Garments to Provide Physiological and Subjective Comfort During EVA

2004-07-19
2004-01-2347
The shortened liquid cooling/warming garment (SLCWG) developed by the University of Minnesota group was compared with the standard NASA liquid cooling/ventilating garment (LCVG) garment during physical exertion in comfort (24°C) and hot (35°C) chamber environments. In both environmental conditions, the SLCWG was just as effective as the LCVG in maintaining rectal temperature (Tre) in a thermal comfort range; sweat production on the face was less; and subjective perception of overall and local body comfort was higher. The findings indicate that the SLCWG produces the same or greater comfort level as that achieved with the LCVG's total coverage of the body surface.
X