Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Evaluation of SOF Effects on Deposit Characteristics of the EGR Cooler Using a PM Generator

2011-04-12
2011-01-1156
The high concentration of particulate matter (PM) in diesel exhaust gas causes significant soot deposition on the wall of EGR cooler, and reduces the heat transfer performance of the EGR cooler and the reduction rate of NOx. The deposition of PM tends to be occurred more severely with "heavy wet PM," which is more frequently at the LTC (low temperature combustion) engine. The objective of this work is to evaluate the effects of soluble organic fraction (SOF) on deposit characteristics of the EGR cooler. To measure reliable mean particle concentration values and surrogate SOFs, the soot generator with SOF vaporizer was used. As for two surrogate SOFs, n-dodecane and diesel lube oil, deposit mass increased when they were injected. Especially from the experiment results, it was found that the lube oil effect was more significant than the n-dodecane effect and lube oil also had a stronger effect on reduction of thermal conductivity by filling pores in deposits.
Technical Paper

Spark-Ignition Engine Knock Control and Threshold Value Determination

1996-02-01
960496
Knock control algorithms were developed for a spark-ignition engine. Spark timing was controlled using cylinder block vibration signal. The vibration signal of a 1.5 L four cylinder spark-ignition engine was measured using an accelerometer which was attached to the cylinder block. The maximum amplitude of the bandpass-filtered accelerometer signals was used as the knock intensity. Three different spark-ignition engine knock control algorithms were tested experimentally. Two algorithms were conventional algorithms in which knock threshold values were predetermined for each engine condition. Spark timing was retarded and advanced depending on the knock intensity in one algorithm and the knock occurrence interval in the other algorithm. The third algorithm was a new algorithm in which knock threshold values were automatically corrected by monitoring knock condition.
Technical Paper

Measurements and Predictions of Steady-State and Transient Stress Distributions in a Diesel Engine Cylinder Head

1999-03-01
1999-01-0973
A combined experimental and analytical approach was followed in this work to study stress distributions and causes of failure in diesel cylinder heads under steady-state and transient operation. Experimental studies were conducted first to measure temperatures, heat fluxes and stresses under a series of steady-state operating conditions. Furthermore, by placing high temperature strain gages within the thermal penetration depth of the cylinder head, the effect of thermal shock loading under rapid transients was studied. A comparison of our steady-state and transient measurements suggests that the steady-state temperature gradients and the level of temperatures are the primary causes of thermal fatigue in cast-iron cylinder heads. Subsequently, a finite element analysis was conducted to predict the detailed steady-state temperature and stress distributions within the cylinder head. A comparison of the predicted steady-state temperatures and stresses compared well with our measurements.
X