Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Ignition Systems for Spray-Guided Stratified Combustion

2010-04-12
2010-01-0598
The success of stratified combustion is strongly determined by the injection and ignition system used. A large temporal and spatial variation of the main parameters - mixture composition and charge motion - in the vicinity of the spark location are driving the demands for significantly improved ignition systems. Besides the requirements for conventional homogeneous combustion systems higher ignition energy and breakdown voltage capability is needed. The spark location or spark plug gap itself has to be open and well accessible for the mixture to allow a successful flame kernel formation and growth into the stratified mixture regime, while being insensitive to potential interaction with liquid fuel droplets or even fuel film. For this purpose several different ignition concepts are currently being developed. The present article will give an ignition system overview for stratified combustion within Delphi Powertrain Systems.
Journal Article

Numerical and Experimental Investigation of Heat Flow in Permanent Magnet Brushless DC Hub Motor

2014-10-13
2014-01-2900
This paper investigates the heat dissipation in the hub motor of an electric two-wheeler using lumped parameter (LP), finite element (FE) and computational fluid dynamic (CFD) models. The motor uses external rotor permanent magnet brushless DC topology and nearly all of its losses are generated in the stator. The hub motor construction restricts the available conductive paths for heat dissipation from the stator to the ambient only through the shaft. In contrast to an internal rotor structure, where the stator winding losses are diffused via conduction, here convection plays a major role in loss dissipation. Therefore, a LP thermal model with improved convection modelling has been proposed to calculate the temperature of the components inside the hub motor. The developed model is validated with the FE thermal model and the test data. In addition, CFD tools has been used to accurately model the internal and the external flow as well as the convective heat transfer of the hub motor.
Technical Paper

Numerical Study of the Scavenging Process in a Large Two-Stroke Marine Engine Using URANS and LES Turbulence Models

2020-09-15
2020-01-2012
A computational fluid dynamics study of the scavenging process in a large two-stroke marine engine is presented in this work. Scavenging which is one of the key processes in the two-stroke marine engines, has a direct effect on fuel economy and emissions. This process is responsible for fresh air delivery, removing the combustion products from the cylinder, cooling the combustion chamber surfaces and providing a swirling flow for better air-fuel mixing. Therefore, having a better understanding of this process and the associated flow pattern is crucial. This is not achievable solely by experimental tests for large engines during engine operation due to the difficulties of measuring the flow field inside the cylinder. In this study, the axial and tangential velocities are compared and validated with the experimental results obtained from Particle Image Velocimetry (PIV) tests [1].
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Real-time Sensing of Particulate Matter in a Vehicle Exhaust System

2017-03-28
2017-01-1639
Onboard diagnostic regulations require performance monitoring of diesel particulate filters used in vehicle aftertreatment systems. Delphi has developed a particulate matter (PM) sensor to perform this function. The objective of this sensor is to monitor the soot (PM) concentration in the exhaust downstream of the diesel particulate filter which provides a means to calculate filter efficiency. The particulate matter sensor monitors the deposition of soot on its internal sensing element by measuring the resistance of the deposit. Correlations are established between the soot resistance and soot mass deposited on the sensing element. Currently, the sensor provides the time interval between sensor regeneration cycles, which, with the knowledge of the exhaust gas flow parameters, is correlated to the average soot concentration.
Journal Article

Ventilation Characteristics of Modeled Compact Car Part 2 Estimation of Local Ventilation Efficiency and Inhaled Air Quality

2008-04-14
2008-01-0731
In order to evaluate the ventilation characteristics of car interior, a model experiment was performed. Part 1 deals with the air flow properties in a half-scale car model. In this paper, a trace gas experimental method equipped with Flame Ionization Detector (FID) systems is introduced to examine the local ventilation efficiency and inhaled air quality in the car, which was ventilated at a flow rate of 100 m3/h and kept in an isothermal environment of 28°C in the experiment. Here, ventilation efficiency was evaluated by means of the Scales for Ventilation Efficiencies (SVEs), and inhaled air quality in terms of the influences of passive smoke and foot odor was evaluated by means of the Contribution Ratio of Pollution source 1 (CRP1). Therefore, calculation methods using trace gas concentration values were suggested for these indices, which were proposed based on the Computational Fluid Dynamics (CFD) technique.
Journal Article

Model-Based Development of AUTOSAR-Compliant Applications: Exterior Lights Module Case Study

2008-04-14
2008-01-0221
The complexity of automotive software and the needs for shorter development time and software portability require the development of new approaches and standards for software architectures. The AUTOSAR project is one of the most comprehensive and promising solutions for defining a methodology supporting a function-driven development process. Furthermore, it manifests itself as a standard for expressing compatible software interfaces at the Application Layer. This paper discusses the implementation of AUTOSAR requirements for the component structure, as well as interfaces to the Application Layer in a model-based development environment. The paper outlines the major AUTOSAR requirements for software components, provides examples of their implementation in a Simulink/Stateflow model, and describes the modelbased implementation of an operating system for running AUTOSAR software executables (“runnables”).
Journal Article

HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-Based VVA Engine: The Low Load Limit

2012-04-16
2012-01-1134
While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single-cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000 rpm.
Journal Article

Development and Validation of Chemical Kinetic Mechanism Reduction Scheme for Large-Scale Mechanisms

2014-10-13
2014-01-2576
This work is an extension to a previously reported work on chemical kinetic mechanism reduction scheme for large-scale mechanisms. Here, Perfectly Stirred Reactor (PSR) was added as a criterion of data source for mechanism reduction instead of using only auto-ignition condition. As a result, a reduced n-hexadecane mechanism with 79 species for diesel fuel surrogate was successfully derived from the detailed mechanism. Following that, the reduced n-hexadecane mechanism was validated under auto-ignition and PSR conditions using zero-dimensional (0-D) closed homogeneous batch reactor in CHEMKIN-PRO software. Agreement was achieved between the reduced and detailed mechanisms in ignition timing predictions and the reduced n-hexadecane mechanism was able to reproduce species concentration profiles with a maximum error of 40%. Accordingly, two-dimensional (2-D) Computational Fluid Dynamic (CFD) simulations were performed to study the spray combustion phenomena within a constant volume bomb.
Journal Article

Energy Efficient HVAC System with Spot Cooling in an Automobile - Design and CFD Analysis

2012-04-16
2012-01-0641
Spot, or distributed, cooling and heating is an energy efficient way of delivering comfort to an occupant in the car. This paper describes an approach to distributed cooling in the vehicle. A two passenger CFD model of an SUV cabin was developed to obtain the solar and convective thermal loads on the vehicle, characterize the interior thermal environment and accurately evaluate the fluid-thermal environment around the occupants. The present paper focuses on the design and CFD analysis of the energy efficient HVAC system with spot cooling. The CFD model was validated with wind tunnel data for its overall accuracy. A baseline system with conventional HVAC air was first analyzed at mid and high ambient conditions. The airflow and cooling delivered to the driver and the passenger was calculated. Subsequently, spot cooling was analyzed in conjunction with a much lower conventional HVAC airflow.
Technical Paper

Differences between On Board Diagnostic Systems (EOBD, OBD-II, OBD-BR1 and OBD-BR2)

2006-11-21
2006-01-2671
The Gasoline Engine Management Systems for passenger cars have the OBD-II (On Board Diagnostic) for United States of America market, the EOBD (European On Board Diagnostic) for Europe and OBD-BR1 and OBD-BR2 for Brazil. This paper presents the differences between these four On Board Diagnostic Systems.
Technical Paper

Thermally-Induced Microstructural Changes in a Three-Way Automotive Catalyst

1997-10-01
972905
The use of advanced electron microscopy techniques to characterize both the bulk and near-atomic level microstructural evolution of catalyst materials during different dynamometer/vehicle aging cycles is an integral part of understanding catalyst deactivation. The study described here was undertaken to evaluate thermally-induced microstructural changes which caused the progressive loss of catalyst performance in a three-way automotive catalyst. Several different catalyst processing variables, for example changing the washcoat ceria content, were also evaluated as a function of aging cycle and thermal history. A number of thermally-induced microstructural changes were identified using high resolution electron microscopy techniques that contributed to the deactivation of the catalyst, including sintering of all washcoat constituents, γ-alumina transforming to α-, β-, and δ-alumina, precious metal redistribution, and constituent encapsulation.
Technical Paper

Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

2007-10-29
2007-01-4008
The described investigation was carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline.
Technical Paper

A study on the effects of compression ratio, engine speed and equivalence ratio on HCCI combustion of DME

2007-07-23
2007-01-1860
An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio was adjusted in steps to find suitable regions of operation, and the effect of engine speed was studied at 1000, 2000 and 3000 RPM. It was found that leaner excess air ratios require higher compression ratios to achieve satisfactory combustion. Engine speed also affects operation significantly.
Technical Paper

Novel base metal-palladium catalytic diesel filter coating with NO2 reducing properties

2007-07-23
2007-01-1921
A novel base metal-palladium catalytic coating was applied on commercial silicon carbide wall flow diesel filters and tested in an engine test bench. This catalytic coating limits the NO2 formation and even removes NO2 within a wide temperature range. Soot combustion, HC conversion and CO conversion properties are comparable to current platinum-based coatings, but at a lower cost. This paper compares the results from engine bench tests of present commercial solutions as regards NO2-, HC-, CO-removal and soot combustion with the novel coating. Furthermore, emission test results from base metal-palladium coated diesel particulate filters installed on operating taxis and related test cycle data are presented. A significant reduction in NO2 emission compared to present technology is measured.
Technical Paper

Using the Six Sigma Methodology for Process Variation Reduction

2007-11-28
2007-01-2872
This paper is about the use of the Six Sigma Methodology, to solve variation problems in the manufacture area, at one of the Delphi Automotive Systems unit that manufacturer electrical harness. The DMAIC framework was followed, the improvements were done, eliminating the rots causes, and the use of Six Sigma methodology, was showed very efficient in solve problems. The methodology power, is in using a structured frame work, the DMAIC (Define-Measure-Analyze-Improve-Control), completing by quality quality tools (Pareto Chart, Five Why's, Cause and Effect Diagram) and statistical analyses, for example: variance analyses, hypotheses tests and Design of Experiments.
Technical Paper

CFD-Aided Development of Spray for an Outwardly Opening Direct Injection Gasoline Injector

1998-02-23
980493
A high pressure outwardly opening fuel injector has been developed to produce sprays that meet the stringent requirements of gasoline direct injection (DI) combustion systems. Predictions of spray characteristics have been made using KIVA-3 in conjunction with Star-CD injector flow modeling. After some modeling iterations, the nozzle design has been optimized for the required flow, injector performance, and spray characteristics. The hardware test results of flow and spray have confirmed the numerical modeling accuracy and the spray quality. The spray's average Sauter mean diameter (SMD) is less than 15 microns at 30 mm distance from the nozzle. The DV90, defined as the drop diameter such that 90% of the total liquid volume is in drops of smaller diameter, is less than 40 microns. The maximum penetration is about 70 mm into air at atmospheric pressure. An initial spray slug is not created due to the absence of a sac volume.
Technical Paper

Rapid Algorithm Development Tools Applied to Engine Management Systems

1998-02-23
980799
Intense competition in the automotive industry requires continuous reduction in innovation cycle time, even as corporations are downsizing and system complexity is increasing. Subsequently, the application of recently introduced Rapid Algorithm Development (RAD) tools has facilitated significant advances in the development of embedded control systems. The RAD steps include system modeling, control algorithm design, simulation analysis, automated calibration design, and vehicle implementation through automatic code generation. The application of RAD tools and the associated benefits are described, specifically in the context of Engine Management Systems (EMS). Such benefits include significant reductions in development cycle time, open architecture, automated calibration, and information reuse.
Technical Paper

Performance Evaluation of Door & Seat Side-Impact Airbags for Passenger Van and Sport-Utility Vehicles

1998-02-23
980912
Side impact accounts for a significant source of societal harm, injury and death. To address this issue, Europe and US have introduced legislation to be met for the new vehicle certification. In an effort to meet these regulations and the market demand for safety, Automotive manufacturers have significantly improved vehicle side structure integrity and introduced side impact airbags are for added protection. Today, passenger vans, light truck and sport-utility type vehicles are all popular consumer choices in the US. These vehicles differ significantly from passenger cars in many respects and as such need special design considerations for side airbags. Here, MADYMO-3D model of a generic passenger van / Sport-Utility type vehicle is created and correlated to FMVSS-214 side impact crash test. This model is used to evaluate both door and seat mounted side airbag designs in different orientations at standard test impact condition and at a higher speed.
Technical Paper

Mean Value Modelling of Turbocharged Spark Ignition Engines

1998-02-23
980784
An important paradigm for the modelling of naturally aspirated (NA) spark ignition (SI) engines for control purposes is the Mean Value Engine Model (MVEM). Such models have a time resolution which is just sufficient to capture the main details of the dynamic performance of NA SI engines but not the cycle-by-cycle behavior. In principle such models are also physically based, are very compact in a mathematical sense but nevertheless can have reasonable prediction accuracy. Presently no MVEMs have been constructed for intercooled turbocharged SI engines because their complexity confounds the simple physical understanding and description of such engines. This paper presents a newly constructed MVEM for a turbocharged SI engine which contains the details of the compressor and turbine characteristics in a compact way. The model has been tested against the responses of an experimental engine and has reasonable accuracy for realistic operating scenarios.
X