Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Video

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-12-05
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
Journal Article

Analysis of Flight Test Results of the Optical Ice Detector

2015-06-15
2015-01-2106
Cloud phase discrimination, coupled with measurements of liquid water content (LWC) and ice water content (IWC) as well as the detection and discrimination of supercooled large droplets (SLD), are of primary importance in aviation safety due to several high-profile incidents over the past two decades. The UTC Aerospace Systems Optical Ice Detector (OID) is a prototype laser sensor intended to discriminate cloud phase, to quantify LWC and IWC, and to detect SLD and differentiate SLD conditions from those of Appendix C. Phase discrimination is achieved through depolarization scattering measurements of a circularly polarized laser beam transmitted into the cloud. Optical extinction measurements indicate the liquid and ice water contents, while the differential backscatter from two distinct probe laser wavelengths implies an effective droplet size. The OID is designed to be flush-mounted with the aircraft skin and to sample the air stream beyond the boundary layer of the aircraft.
Journal Article

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-09-13
2011-01-2264
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
Technical Paper

Hardware-in-the-Loop Test Systems for Electric Motors in Advanced Powertrain Applications

2007-04-16
2007-01-0498
Electric drives are growing in importance in automotive applications, especially in hybrid electric vehicles (HEV) and in the vehicle dynamics area (steering systems, etc.). The challenges of real-time hardware-in-the-loop (HIL) simulation and testing of electric drives are addressed in this paper. In general, three different interface levels between the electric drive and the hardware-inthe-loop system can be distinguished: the signal level (1), the electrical level (2) and the mechanical level (3). These interface levels, as well as modeling and I/O-related aspects of electric drives and power electronics devices, are discussed in detail in the paper. Finally, different solutions based on dSPACE simulator technology are presented, for both hybrid vehicle and steering applications.
Technical Paper

Embedded Software Tools Enable Hybrid Vehicle Architecture Design and Optimization

2010-10-19
2010-01-2308
This presentation focuses on several examples of partnerships between tool suppliers and embedded software developers in which state-of-the-art tools are used to optimize a variety of electric and hybrid vehicle architectures. Projects with Automotive OEMs, Tier One Suppliers as well as with academic institutions will be described. Due to the growing complexity in multiple electronic control units (“ECUs”) inter-communicating over numerous network bus systems, combined with the challenge of controlling and maintaining charges for electric motors, vehicle development would be impossible without use of increasingly sophisticated tools. Hybrid drive trains are much more complex than conventional ones, they have at least one degree of freedom more.
Technical Paper

A Hardware-in-the-Loop Test Bench for the Validation of Complex ECU Networks

2002-03-04
2002-01-0801
Due to the continuously increasing number of electronic control units (ECUs) in modern cars, and their growing complexity, automated tests not only of single ECUs but also of interconnected ECUs have become an important step in the development of automotive electronics. These tasks require new test systems. This paper describes the problems engineers face when developing and testing today's car electronics, as well as a high-end hardware-in-the-loop (HIL) tool set (hardware, software, models) applied to the testing of four networked ECUs for engine management, vehicle dynamics control, automatic transmission, and an active suspension system. The tool set comprises general features needed for HIL tests, like automated code generation for real-time models using MATLAB/Simulink and a comprehensive set of dedicated hardware (processor and I/O hardware).
Technical Paper

Method for Analytical Calculation of Harmonic Content of Auto-Transformer Rectifier Units

2016-09-20
2016-01-2059
Auto transformer rectifier units (ATRUs) are commonly used in aircraft applications such as electric actuation for harmonic mitigation due to their high reliability and relative low cost. However, those components and the magnetic filter components associated to it are the major contributors to the overall size and weight of the system. Optimization of the magnetic components is essential in order to minimize weight and size, which are major market drivers in aerospace industry today. This requires knowledge of the harmonic content of the current. This can be obtained by simulation, but the process is slow. In order to enable fast and efficient design space exploration of optimal solutions, an algebraic calculation process is proposed in this paper for multi-pulse ATRUs (e.g. 12-pulse and 18-pulse rectifiers), starting from existing solution proposed for 6 pulse rectifier in the literature.
Technical Paper

Hybrid Drivetrain Simulation for Hardware-in-the-Loop Applications

2011-04-12
2011-01-0455
This paper describes challenges and possible solution of hybrid electrical vehicles test systems with a special focus on hardware-in-the-loop (HIL) test bench. The degree of novelty of this work can be seen in the fact that development and test of ECU for hybrid electrical powertrains can move more and more from mechanical test benches with real automotive components to HIL test systems. The challenging task in terms of electrical interface between an electric motor ECU and an HIL system and necessary real-time capable simulation models for electric machines have been investigated and partly solved. Even cell balancing strategies performed by battery management systems (BMU) can be developed and tested using HIL technology with battery simulation models and a precise cell voltage simulation on electrical level.
Technical Paper

Hardware-in-the-Loop Test of Battery Management Systems

2013-04-08
2013-01-1542
The essential task of a battery management system (BMS) is to consistently operate the high-voltage battery in an optimum range. Due to the safety-critical nature of its components, prior testing of a BMS is absolutely necessary. Hardware-in-the-loop (HIL) simulation is a cost-effective and efficient tool for this. Testing the BMS on a HIL test bench requires an electronics unit to simulate the cell voltages and a scalable real-time battery model. This paper describes a HIL system that enables comprehensive testing of BMS components. Hardware and software solutions are proposed for the high requirements of these tests. The individual components are combined to make a modular system, and safety-critical aspects are examined. The paper shows that the system as developed fulfills all the requirements derived from the different test scenarios for BMS systems.
Technical Paper

Data Fusion Techniques for Object Identification in Airport Environment

2017-09-19
2017-01-2109
Airport environments consist of several moving objects both in the air and on the ground. In air moving objects include aircraft, UAVs and birds etc. On ground moving objects include aircraft, ground vehicles and ground personnel etc. Detecting, classifying, identifying and tracking these objects are necessary for avoiding collisions in all environmental situations. Multiple sensors need to be employed for capturing the object shape and position from multiple directions. Data from these sensors are combined and processed for object identification. In current scenario, there is no comprehensive traffic monitoring system that uses multisensor data for monitoring in all the airport areas. In this paper, for explanation purposes, a hypothetical airport traffic monitoring system is presumed that uses multiple sensors for avoiding collisions.
Technical Paper

Augmented Head Mount Virtual Assist for Pilot

2015-09-15
2015-01-2536
Recent years have seen a rise in the number of air crashes and on board fatalities. Statistics reveal that human error constitutes upto 56% of these incidents. This can be attributed to the ever growing air traffic and technological advancements in the field of aviation, leading to an increase in the electronic and mechanical controls in the cockpit. Accidents occur when pilots misinterpret gauges, weather conditions, fail to spot mechanical faults or carry out inappropriate actions. Currently, pilots rely on flight manuals (hard copies or an electronic tablet) to respond to an emergency. This is prone to human error or misinterpretation. Also, a considerable amount of time is spent in seeking, reading, interpreting and implementing the corrective action. The proposed augmented head mount virtual assist for the pilot eliminates flight manuals, by virtually guiding the pilot in responding to in-flight necessities.
X