Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Trailer Technologies for Increased Heavy-Duty Vehicle Efficiency: Technical, Market, and Policy Considerations

2014-04-01
2014-01-1622
This paper reviews fuel-saving technologies for commercial trailers, provides an overview of the trailer market in the U.S., and explores options for policy measures at the federal level that can promote the development and deployment of trailers with improved efficiency. For trailer aerodynamics, there are many technologies that exist and are in development to target each of the three primary areas where drag occurs: 1) the tractor-trailer gap, 2) the side and underbody of the trailer, and 3) the rear end of the trailer. In addition, there are tire technologies and weight reduction opportunities for trailers, which can lead to reduced rolling resistance and inertial loss. As with the commercial vehicle sector, the trailer market is diverse, and there are a variety of sizes and configurations that are employed to meet a wide range of freight demands.
Technical Paper

Neural Network Modeling of Emissions from Medium-Duty Vehicles Operating on Fisher-Tropsch Synthetic Fuel

2007-04-16
2007-01-1080
West Virginia University has conducted research to characterize the emissions from medium-duty vehicles operating on Fischer-Tropsch synthetic gas-to-liquid compression ignition fuel. The West Virginia University Transportable Heavy Vehicle Emissions Testing Laboratory was used to collect data for gaseous emissions (carbon dioxide, carbon monoxide, oxides of nitrogen, and total hydrocarbon) while the vehicles were exercised through a representative driving schedule, the New York City Bus Cycle (NYCB). Artificial neural networks were used to model emissions to enhance the capabilities of computer-based vehicle operation simulators. This modeling process is presented in this paper. Vehicle velocity, acceleration, torque at rear axel, and exhaust temperature were used as inputs to the neural networks. For each of the four gaseous emissions considered, one set of training data and one set of validating data were used, both based on the New York City Bus Cycle.
Technical Paper

The DOE/NREL Environmental Science Program

2001-05-14
2001-01-2069
This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.
Technical Paper

Final Operability and Chassis Emissions Results from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

2005-10-24
2005-01-3769
Six 2001 International Class 6 trucks participated in a project to determine the impact of gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (DPFs) on emissions and operations from December 2003 through August 2004. The vehicles operated in Southern California and were nominally identical. Three vehicles operated “as-is” on California Air Resources Board (CARB) specification diesel fuel and no emission control devices. Three vehicles were retrofit with Johnson Matthey CCRT® (Catalyzed Continuously Regenerating Technology) filters and fueled with Shell GTL Fuel. Two rounds of emissions tests were conducted on a chassis dynamometer over the City Suburban Heavy Vehicle Route (CSHVR) and the New York City Bus (NYCB) cycle. The CARB-fueled vehicles served as the baseline, while the GTL-fueled vehicles were tested with and without the CCRT filters. Results from the first round of testing have been reported previously (see 2004-01-2959).
Technical Paper

The DOE/NREL Environmental Science & Health Effects Program - An Overview

1999-04-27
1999-01-2249
This paper summarizes current work in the Environmental Science & Health Effects (ES&HE) Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. The goal of the ES&HE Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based and alternative transportation fuels. Each project in the program is designed to address policy-relevant objectives. Studies in the ES&HE Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements, emission inventory development/improvement; and ambient impacts, including health effects.
Technical Paper

Progress in Understanding the Toxicity of Gasoline and Diesel Engine Exhaust Emissions

1999-04-27
1999-01-2250
To help guide heavy vehicle engine, fuel, and exhaust after-treatment technology development, the U.S. Department of Energy and the Lovelace Respiratory Research Institute are conducting research not addressed elsewhere on aspects of the toxicity of particulate engine emissions. Advances in these technologies that reduce diesel particulate mass emissions may result in changes in particle composition, and there is concern that the number of ultrafine (<0.1 micron) particles may increase. All present epidemiological and laboratory data on the toxicity of diesel emissions were derived from emissions of older-technology engines. New, short-term toxicity data are needed to make health-based choices among diesel technologies and to compare the toxicity of diesel emissions to those of other engine technologies.
Technical Paper

Comparative Toxicity of Gasoline and Diesel Engine Emissions

2000-06-19
2000-01-2214
Better information on the comparative toxicity of airborne emissions from different types of engines is needed to guide the development of heavy vehicle engine, fuel, lubricant, and exhaust after-treatment technologies, and to place the health hazards of current heavy vehicle emissions in their proper perspective. To help fill this information gap, samples of vehicle exhaust particles and semi-volatile organic compounds (SVOC) were collected and analyzed. The biological activity of the combined particle-SVOC samples is being tested using standardized toxicity assays. This report provides an update on the design of experiments to test the relative toxicity of engine emissions from various sources.
Technical Paper

Class 8 Trucks Operating On Ultra-Low Sulfur Diesel With Particulate Filter Systems: Regulated Emissions

2000-10-16
2000-01-2815
Emissions from heavy-duty vehicles may be reduced through the introduction of clean diesel formulations, and through the use of catalyzed particulate matter filters that can enjoy increased longevity and performance if ultra-low sulfur diesel is used. Twenty over-the-road tractors with Detroit Diesel Series 60 engines were selected for this study. Five trucks were operated on California (CA) specification diesel (CARB), five were operated on ARCO (now BP Amoco) EC diesel (ECD), five were operated on ARCO ECD with a Johnson-Matthey Continuously Regenerating Technology (CRT) filter and five were operated on ARCO ECD with an Engelhard Diesel Particulate Filter (DPX). The truck emissions were characterized using a transportable chassis dynamometer, full-scale dilution tunnel, research grade gas analyzers and filters for particulate matter (PM) mass collection. Two test schedules, the 5 mile route and the city-suburban (heavy vehicle) route (CSR), were employed.
Technical Paper

Quantification of Yard Hostler Activity and the Development of a Representative Yard Hostler Cycle

2009-11-02
2009-01-2652
Yard hostlers are tractors (switchers) used to move containers at ports and storage facilities. While many speed-time driving cycles for assessing emissions and performance from heavy-duty vehicles exist, a driving cycle representative of yard hostler activity at Port of Long Beach, CA was not available. Activity data were collected from in-use yard hostlers as they performed ship loading/unloading, rail loading/unloading and other yard routines, primarily moving containers on trailers or carts. The activity data were then used to develop four speed-time driving cycles with durations of 1200 seconds, representing light and heavy ship activities and light and heavy load rail activities. These cycles were constructed using actual speed-time data collected during activity logging and the cycles created were statistically comparable to each subset of activity data.
X