Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Performance Parameter Analysis of a Biodiesel-Fuelled Medium Duty Diesel Engine

2009-04-20
2009-01-0481
Biodiesel remains an alternative fuel of interest for use in diesel engines. A common characteristic of biodiesel, relative to petroleum diesel, is a lowered heating value (or energy content of the fuel). A lower heating value of the fuel would, presuming all other parameters are equal, result in decreased engine torque. Since engine torque is often user-demanded, the lower heating value of the fuel generally translates into increased brake specific fuel consumption. Several literature report this characteristic of biodiesel. In spite of the wealth of fuel consumption characteristic data available for biodiesel, it is not clear how other engine performance parameters may change with the use of biodiesel. Characterizing these parameters becomes complicated when considering the interactions of the various engine systems, such as a variable geometry turbocharger with exhaust gas recirculation.
Technical Paper

Development and Use of a Regenerative Braking Model for a Parallel Hybrid Electric Vehicle

2000-03-06
2000-01-0995
A regenerative braking model for a parallel Hybrid Electric Vehicle (HEV) is developed in this work. This model computes the line and pad pressures for the front and rear brakes, the amount of generator use depending on the state of deceleration (i.e. the brake pedal position), and includes a wheel lock-up avoidance algorithm. The regenerative braking model has been developed in the symbolic programming environment of MATLAB/SIMULINK/STATEFLOW for downloadability to an actual HEV's control system. The regenerative braking model has been incorporated in NREL's HEV system simulation called ADVISOR. Code modules that have been changed to implement the new regenerative model are described. Resulting outputs are compared to the baseline regenerative braking model in the parent code. The behavior of the HEV system (battery state of charge, overall fuel economy, and emissions characteristics) with the baseline and the proposed regenerative braking strategy are first compared.
Technical Paper

Equivalent Consumption Minimization Strategy for a Power Split Supercharger

2019-04-02
2019-01-1207
Low voltage hybridization (<60 V) supports engine start/stop, regenerative braking, and constrained torque assist/regeneration at a low cost. This work studies the potential benefits of a novel hybrid system, called a power split supercharger (PSS). A 9 kW motor is shared between boosting the engine or providing hybrid functionalities, allowing it to couple with a small engine and still support good acceleration. However, the PSS operation is limited to only one of the parallel hybrid or boosting modes at each time instance. In this work an equivalent consumption minimization strategy (ECMS) is developed to select the PSS mode and the motor torque during hybrid mode. The PSS operation is simulated over standard EPA drive cycles with an engine mean value model that captures detailed air path and PSS dynamics.
X