Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Large Eddy Simulations of Supercritical and Transcritical Jet Flows Using Real Fluid Thermophysical Properties

2020-04-14
2020-01-1153
In order to understand supercritical jet flows further, well resolved large eddy simulations (LES) of a n-dodecane jet mixing with surrounding nitrogen are conducted. A real fluid thermodynamic model is used to account for the fuel compressibility and variable thermophysical properties due to the solubility of ambient gas and liquid jet using the cubic Peng-Robinson equation of state (PR-EOS). A molar averaged homogeneous mixing rule is used to calculate the mixing properties. The thermodynamic model is coupled with a pressure-based solver to simulate multispecies reacting flows. The numerical model is based on a second order accurate method implemented in the open source OpenFOAM-6 software. First, to evaluate the present numerical model for sprays, 1D advection and shock tube benchmark problems at supercritical conditions are shown.
Technical Paper

Validation of Computational Models for Isobaric Combustion Engines

2020-04-14
2020-01-0806
The focus of this study is to aid the development of the isobaric combustion engine by investigating multiple injection strategies at moderately high pressures. A three-dimensional (3D) commercial computational fluid dynamics (CFD) code, CONVERGE, was used to conduct simulations. The validation of the isobaric combustion case was carried out through the use of a single injector with multiple injections. The computational simulations were matched to the experimental data using methods outlined in this paper for different multiple injection cases. A sensitivity analysis to understand the effects of different modeling components on the quantitative prediction was carried out. First, the effects of the kinetic mechanisms were assessed by employing different chemical mechanisms, and the results showed no significant difference in the conditions under consideration.
Technical Paper

A High Temperature and High Pressure Evaporation Model for the KIVA-3 Code

1996-02-01
960629
A high pressure and high temperature evaporation model was implemented in the KIVA-3 multidimensional engine simulation. The most significant features of the new evaporation model are: the effects of Stefan flow on transfer rates are included; internal circulation is accounted using the effective conductivity model of Abramzon and Sirignano [1]; equilibrium composition is calculated at high pressures using a real gas equation of state; and properties are evaluated as functions of temperature, pressure and composition. The evaporation of a continuous spray of n-dodecane injected in a chamber pressurized with nitrogen gas was simulated using the two models. Predictions of the evaporation rate, the spray penetration and fuel vapor distribution by the two models were significantly different. The differences persisted over a range of ambient pressures and temperatures, injection velocities, initial droplet sizes and fuel volatilities.
Technical Paper

Thin Thermal Barrier Coatings for Engines

1989-02-01
890143
Contrary to the thick thermal barrier coating approach used in adiabatic diesel engines, the authors have investigated the merits of thin coatings. Transient heat transfer analysis indicates that the temperature swings experienced at combustion chamber surfaces depend primarily on material thermophysical properties, i.e., conductivity, density, and specific heat. Thus, cyclic temperature swings should be alike whether thick or thin (less than 0.25 mm) coatings are applied, Furthermore, thin coatings would lead to lower mean component temperatures and would be easier to apply than thick coatings. The thinly-coated engine concept offers several advantages including improved volumetric efficiency, lower cylinder liner wall temperatures, improved piston-liner tribological behavior, and improved erosion-corrosion resistance and thus greater component durability.
Technical Paper

Characteristics of Methanol and Iso-Octane Under Flashing and Non-Flashing Conditions in ECN-G Spray

2022-03-29
2022-01-0496
This paper investigated the spray characteristics of methanol under the flash and non-flash boiling conditions defined by the Engine Combustion Network (ECN) Spray G. As a counterpart, the spray features of iso-octane were also simulated and compared to methanol. The Volume of Fluid (VOF) approach under the Eulerian scheme was employed to model the internal nozzle flow details, which information was used to initialize the spray parcels and taken as input for the Lagrangian simulations, namely, the one-way coupling method. Since the Eulerian high-fidelity simulations allow capturing the effects of the flow inside the non-symmetrical injector, the rate of injection (ROI) profile, discharge coefficient, and plume angle et al. are not required for the Lagrangian simulations. The simulation results show that the flash boiling led to longer penetrations and higher evaporation compared to the non-flash boiling condition for both fuels.
Technical Paper

Overview of Techniques for Measuring Friction Using Bench Tests and Fired Engines

2000-06-19
2000-01-1780
This paper presents an overview of techniques for measuring friction using bench tests and fired engines. The test methods discussed have been developed to provide efficient, yet realistic, assessments of new component designs, materials, and lubricants for in-cylinder and overall engine applications. A Cameron-Plint Friction and Wear Tester was modified to permit ring-in-piston-groove movement by the test specimen, and used to evaluate a number of cylinder bore coatings for friction and wear performance. In a second study, it was used to evaluate the energy conserving characteristics of several engine lubricant formulations. Results were consistent with engine and vehicle testing, and were correlated with measured fuel economy performance. The Instantaneous IMEP Method for measuring in-cylinder frictional forces was extended to higher engine speeds and to modern, low-friction engine designs.
Technical Paper

Measurements and Predictions of Steady-State and Transient Stress Distributions in a Diesel Engine Cylinder Head

1999-03-01
1999-01-0973
A combined experimental and analytical approach was followed in this work to study stress distributions and causes of failure in diesel cylinder heads under steady-state and transient operation. Experimental studies were conducted first to measure temperatures, heat fluxes and stresses under a series of steady-state operating conditions. Furthermore, by placing high temperature strain gages within the thermal penetration depth of the cylinder head, the effect of thermal shock loading under rapid transients was studied. A comparison of our steady-state and transient measurements suggests that the steady-state temperature gradients and the level of temperatures are the primary causes of thermal fatigue in cast-iron cylinder heads. Subsequently, a finite element analysis was conducted to predict the detailed steady-state temperature and stress distributions within the cylinder head. A comparison of the predicted steady-state temperatures and stresses compared well with our measurements.
X