Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part III: Development of Transfer Functions

2018-04-03
2018-01-1444
An understanding of stiffness characteristics of different body regions, such as thorax, abdomen and pelvis of ES-2re and SID-IIs dummies under controlled laboratory test conditions is essential for development of both compatible performance targets for countermeasures and occupant protection strategies to meet the recently updated FMVSS214, LINCAP and IIHS Dynamic Side Impact Test requirements. The primary purpose of this study is to determine the transfer functions between the ES-2re and SID-IIs dummies for different body regions under identical test conditions using flat rigid wall sled tests. The experimental set-up consists of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and femur/knee impacting a stationary dummy seated on a rigid low friction seat at a pre-determined velocity.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs – Part II: SID-IIs

2018-04-03
2018-01-1448
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part I: ES-2re

2018-04-03
2018-01-1449
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

A Study of Kinematics of Occupants Restrained with Seat Belt Systems in Component Rollover Tests

2007-04-16
2007-01-0709
An experimental study was conducted using a dynamic rollover component test system (ROCS) to study the effects of activating a pyro-mechanical buckle pre-tensioner and an electric retractor on the driver and front right passenger head and pelvis excursions. The ROCS is a unique system capable of producing vehicle responses that replicate four distinct phases of a tripped rollover: trip initiation, roll initiation, free-flight vehicle rotation, and vehicle to ground contact. This component test system consists of a rigid occupant compartment derived from a mid-size SUV with complete 1st row seating and interior trim, a simulated vehicle suspension system and an elastic vehicle-to-ground-contact surface. The ROCS system was integrated with a Deceleration Rollover Sled (DRS). Dynamic responses of the ROCS system, including both the rigid compartment and occupant, were measured and recorded.
Technical Paper

Development of an FE Model of the Rat Head Subjected to Air Shock Loading

2010-11-03
2010-22-0011
As early as the 1950's, Gurdjian and colleagues (Gurdjian et al., 1955) observed that brain injuries could occur by direct pressure loading without any global head accelerations. This pressure-induced injury mechanism was "forgotten" for some time and is being rekindled due to the many mild traumatic brain injuries attributed to blast overpressure. The aim of the current study was to develop a finite element (FE) model to predict the biomechanical response of rat brain under a shock tube environment. The rat head model, including more than 530,000 hexahedral elements with a typical element size of 100 to 300 microns was developed based on a previous rat brain model for simulating a blunt controlled cortical impact. An FE model, which represents gas flow in a 0.305-m diameter shock tube, was formulated to provide input (incident) blast overpressures to the rat model. It used an Eulerian approach and the predicted pressures were verified with experimental data.
Technical Paper

Structural Response of Lower Leg Muscles in Compression: A Low Impact Energy Study Employing Volunteers, Cadavers and the Hybrid III

2002-11-11
2002-22-0012
Little has been reported in the literature on the compressive properties of muscle. These data are needed for the development of finite element models that address impact of the muscles, especially in the study of pedestrian impact. Tests were conducted to characterize the compressive response of muscle. Volunteers, cadaveric specimens and a Hybrid III dummy were impacted in the posterior and lateral aspect of the lower leg using a free flying pendulum. Volunteer muscles were tested while tensed and relaxed. The effects of muscle tension were found to influence results, especially in posterior leg impacts. Cadaveric response was found to be similar to that of the relaxed volunteer. The resulting data can be used to identify a material law using an inverse method.
Technical Paper

Development of CAE-Based Crash Sensing Algorithm and System Calibration

2003-03-03
2003-01-0509
State of the art electronic restraint systems rely on the acceleration measured during a vehicle crash for deployment decisions. The acceleration signal is analyzed with different criteria, among which the velocity change is a dominant criterion in almost any existing crash detection algorithm. Sensors in the front crush zone have recently been added to help develop restraint systems that comply with the new FMVSS208 and EuroNCAP regulations. Front crash sensors are usually evaluated for their velocity change during a crash and typically play a key role in the deployment decision. CAE based FEA analysis has recently been used to generate signals at the sensor module locations in crash simulations to provide supplemental information for crash sensing algorithm development and calibration. This paper presents an initial effort in developing a velocity-based crash detection algorithm, that allows broad use of CAE generated velocity time histories for system calibration.
Journal Article

A Method for Determining the Vehicle-to-Ground Contact Load during Laboratory-based Rollover Tests

2008-04-14
2008-01-0351
Many rollover safety researches have been conducted experimentally and analytically to investigate the underlying causes of vehicle accidents and develop rollover test procedures and test methodologies to help understand the nature of rollover crash events. In addition, electronic and/or mechanical instrumentation are used in dummy and vehicle to measure their responses that allow both vehicle kinematics study and occupant injury assessment. However, method for measurement of dynamic structural deformation needs further exploration, and means to monitor vehicle-to-ground contact load is still lacking. Thus, this paper presents a method for determining the vehicle-to-ground load during laboratory-based rollover tests using results obtained from a camera-matching photogrammetric technology as inputs to a FE SUV model using a nonlinear crash analysis code.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Journal Article

Finite Element Investigation of Seatbelt Systems for Improving Occupant Protection during Rollover Crashes

2009-04-20
2009-01-0825
The seatbelt system, originally designed for protecting occupants in frontal crashes, has been reported to be inadequate for preventing occupant head-to-roof contact during rollover crashes. To improve the effectiveness of seatbelt systems in rollovers, in this study, we reviewed previous literature and proposed vertical head excursion corridors during static inversion and dynamic rolling tests for human and Hybrid III dummy. Finite element models of a human and a dummy were integrated with restraint system models and validated against the proposed test corridors. Simulations were then conducted to investigate the effects of varying design factors for a three-point seatbelt on vertical head excursions of the occupant during rollovers. It was found that there were two contributing parts of vertical head excursions during dynamic rolling conditions.
Technical Paper

Additional Notes on Finite Element Models of Deformable Featureless Headform

1997-02-24
970164
Model characteristics of a finite element deformable featureless headform with one to four layers of solid elements for the headform skin are studied using both the LS-DYNA3D and FCRASH codes. The models use a viscoelastic material law whose constitutive parameters are established through comparisons of drop test simulations at various impact velocities with the test data. Results indicate that the one-layer model has a significant distinct characteristic from the other (2-to-4-layer) models, thus requiring different parametric values. Similar observation is also noticed in simulating drop tests with one and two layers of solid elements for the headform skin using PAM-CRASH. When using the same parametric values for the viscoelastic material, both the LS-DYNA3D and FCRASH simulations yield the same results under identical impact conditions and, thereby, exhibit a “functional equivalency” between these two codes.
Technical Paper

A Methodology for Prediction of Periprosthetic Injuries in Occupants with TKR Implants in Vehicle Crashes

2016-04-05
2016-01-1529
Periprosthetic fractures refer to the fractures that occur in the vicinity of the implants of joint replacement arthroplasty. Most of the fractures during an automotive frontal collision involve the long bones of the lower limbs (femur and tibia). Since the prevalence of persons living with lower limb joint prostheses is increasing, periprosthetic fractures that occur during vehicular accidents are likely to become a considerable burden on health care systems. It is estimated that approximately 4.0 million adults in the U.S. currently live with Total Knee Replacement (TKR) implants. Therefore, it is essential to study the injury patterns that occur in the long bone of a lower limb containing a total knee prosthesis. The aim of the present study is to develop an advanced finite element model that simulates the possible fracture patterns that are likely during vehicular accidents involving occupants who have knee joint prostheses in situ.
Technical Paper

Lightweighting of an Automotive Front End Structure Considering Frontal NCAP and Pedestrian Lower Leg Impact Safety Requirements

2016-04-05
2016-01-1520
The present work is concerned with the objective of design optimization of an automotive front end structure meeting both occupant and pedestrian safety requirements. The main goal adopted here is minimizing the mass of the front end structure meeting the safety requirements without sacrificing the performance targets. The front end structure should be sufficiently stiff to protect the occupant by absorbing the impact energy generated during a high speed frontal collision and at the same time it should not induce unduly high impact loads during a low speed pedestrian collision. These two requirements are potentially in conflict with each other; however, there may exist an optimum design solution, in terms of mass of front end structure, that meets both the requirements.
Technical Paper

Development and Validation of a Pedestrian Lower Limb Non-Linear 3- D Finite Element Model

2000-11-01
2000-01-SC21
Lower limb injury is becoming an increasingly important concern in vehicle safety for both occupants and pedestrians. To enable vehicle manufacturers to better understand the biomechanical effects of design changes, it is deemed beneficial to employ a biomechanically fidelic finite element model of the human lower limb. The model developed in this study includes long bones (tibia, fibula, femur) and flat bone (patella) as deformable bodies. The pelvis and foot bones are modeled as rigid bodies connected to the femur and tibia/fibula via rotational spring-dashpots. The knee is defined by scanned bone surface geometry and is surrounded by the menisci, major ligaments, and patellar tendon. Finite elements used to model include 6- and 8-node solids for cartilage, menisci, surrounding muscles, and cancellous bone; 3- and 4-node shells for skin and cortical bone; and nonlinear spring-dashpots for ligaments.
X