Refine Your Search

Topic

Search Results

Standard

Exhaust Gas Recirculation (EGR) Cooler Nomenclature and Application

2011-11-02
HISTORICAL
J2914_201111
This document provides an overview on how and why EGR coolers are utilized, defines commonly used nomenclature, discusses design issues and trade-offs, and identifies common failure modes. The reintroduction of exhaust gas into the combustion chamber is just one component of the emission control strategy for internal combustion (IC) engines, both diesel and gasoline, and is useful in reducing exhaust port emission of Nitrogen Oxides (NOx). Other means of reducing NOx exhaust port emissions are briefly mentioned, but beyond the scope of this document.
Standard

Exhaust Gas Recirculation (EGR) Cooler Nomenclature and Application

2022-11-22
CURRENT
J2914_202211
This document provides an overview on how and why EGR coolers are utilized, defines commonly used nomenclature, discusses design issues and trade-offs, and identifies common failure modes. The reintroduction of selectively cooled exhaust gas into the combustion chamber is just one component of the emission control strategy for internal combustion (IC) engines, both diesel and gasoline, and is useful in reducing exhaust port emission of nitrogen oxides (NOx). Other means of reducing NOx exhaust port emissions are briefly mentioned, but beyond the scope of this document.
Standard

Exhaust Gas Recirculation (EGR) Cooler Nomenclature and Application

2016-08-23
HISTORICAL
J2914_201608
This document provides an overview on how and why EGR coolers are utilized, defines commonly used nomenclature, discusses design issues and trade-offs, and identifies common failure modes. The reintroduction of exhaust gas into the combustion chamber is just one component of the emission control strategy for internal combustion (IC) engines, both diesel and gasoline, and is useful in reducing exhaust port emission of Nitrogen Oxides (NOx). Other means of reducing NOx exhaust port emissions are briefly mentioned, but beyond the scope of this document.
Standard

Engine Charge Air Cooler (CAC) Nomenclature

2004-05-24
HISTORICAL
J1148_200405
This SAE Recommended Practice is intended to outline basic nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air cooling system operational performance parameters.
Standard

ENGINE CHARGE AIR COOLER NOMENCLATURE

1997-03-01
HISTORICAL
J1148_199703
This SAE Recommended Practice is intended to outline basic nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air operating and performance parameters.
Standard

ENGINE CHARGE AIR COOLER NOMENCLATURE

1995-06-01
HISTORICAL
J1148_199506
This SAE Recommended Practice is intended to outline basic nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air operating and performance parameters.
Standard

Engine Charge Air Cooler (CAC) Nomenclature

1990-06-01
HISTORICAL
J1148_199006
This SAE Recommended Practice is intended to outline basic nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air operating and performance parameters. An engine charge air cooler is a heat exchanger used to cool the charge air of an internal combustion engine after it has been compressed by an exhaust gas driven turbocharger, an engine driven turbocharger, or a mechanically or electrically driven blower. The use of a charge air cooler allows increased engine horsepower output, and may reduce emission levels and improve fuel economy through a more complete combustion due to the increased air density available. Typical cooling media includes the engine's coolant, ambient air, or an external water or coolant source.
Standard

METHOD FOR DETERMINING POWER CONSUMPTION OF ENGINE COOLING FAN-DRIVE SYSTEMS

1994-09-01
HISTORICAL
J1342_199409
The technique outlined in this SAE Recommended Practice was developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan-drive system. These may include radiators, condensers, charge air coolers, or oil coolers. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan-drive systems, specific test devices have not been included. Using known power/speed relationships for a given fan, this procedure can be used to calculate the fan-drive system’s power consumption for engine cooling systems using fixed-ratio, speed modulating, and on-off fan drives. This power consumption may then be used in determining engine net power per SAE J1349.
Standard

Test Method for Determining Power Consumption of Engine Cooling Fan-Drive Systems

2001-06-25
HISTORICAL
J1342_200106
The technique outlined in this SAE Recommended Practice was developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan-drive system. These may include radiators, condensers, charge air coolers, or oil coolers. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan-drive systems, specific test devices have not been included. Using know power/speed relationships for a given fan, this procedure can be used to calculate the fan-drive system's power consumption for engine cooling systems using fixed-ratio, speed modulating, and on/off fan drives. This power consumption may then be used in determining engine net power per SAE J1349.
Standard

Test Method for Determining Power Consumption of Engine Cooling Fan Drive Systems

2007-06-13
HISTORICAL
J1342_200706
The technique outlined in this SAE Recommended Practice was developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses, but it is applicable to off highway vehicles as well. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan drive system. These may include radiators, condensers, charge air coolers, oil coolers, and others. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan drive systems, specific test devices have not been included. Using known power/speed relationships for a given fan, this procedure can be used to calculate the fan drive system’s power consumption for engine cooling systems using fixed ratio, speed modulating, and on/off fan drives.
Standard

Test Method for Determining Power Consumption of Cooling Fan Drive Systems

2022-08-26
CURRENT
J1342_202208
The techniques outlined in this SAE Recommended Practice were developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses, but it is applicable to off highway vehicles as well. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan drive system. These may include radiators, condensers, charge air coolers, oil coolers, and others. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan drive systems, specific test devices have not been included. Using known power/speed relationships for a given fan, this procedure can be used to calculate the fan drive system’s power consumption for cooling systems using the types of drives listed below. This power consumption may then be used in determining engine net power per SAE J1349.
Standard

Oil Cooler Application Testing and Nomenclature

2021-12-13
CURRENT
J1468_202112
This SAE Recommended Practice is applicable to oil-to-air and oil-to-coolant oil coolers installed on mobile or stationary equipment and provides a glossary of oil cooler nomenclature. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, engine oil, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results.
Standard

FAN HUB BOLT CIRCLES AND PILOT HOLES

1984-07-01
HISTORICAL
J635_198407
The scope of the specification is limited to heavy-duty diesel engine manufacturers, fan suppliers, and end users. Standard mounting patterns are given for fans up to 2000 mm rotating diameter. Passenger car and light-duty fans were not addressed because committee members issuing the specification felt that standards for these fans could be better addressed by personnel working in the market segments which use those fans. Rationale for issuance of the specification is cost savings through reduction of part numbers and inventory. Failure to comply with this specification will result in the need to release and carry in inventory parts of identical blade geometry and construction, but with different mounting patterns.
Standard

FAN HUB BOLT CIRCLES AND PILOT HOLES

1995-06-28
HISTORICAL
J635_199506
The purpose of this SAE Recommended Practice is to encourage the standardization of mounting patterns for engine cooling fans as new engines are designed and developed in SI metric units. It is specifically not the objective of the specification to address the soft metric conversion of existing mounting patterns on engines designed in English units. The scope of the specification is limited to heavy-duty diesel engine manufacturers, fan suppliers, and end users. Standard mounting patterns are given for fans up to 2000 mm rotating diameter. Passenger car and light-duty fans were not addressed because committee members issuing the specification felt that standards for these fans could be better addressed by personnel working in the market segments which use those fans. See Figure 1 and Table 1. Rationale for issuance of the specification is cost savings through reduction of part numbers and inventory.
Standard

Radiator Nomenclature

2018-10-09
CURRENT
J631_201810
This SAE Recommended Practice documents nomenclature in common use for various types of radiator and radiator core construction, as well as for various radiator-related accessories.
X