Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Quasi-Dimensional Computer Simulation of the Turbocharged Spark-Ignition Engine and its Use for 2- and 4-Valve Engine Matching Studies

1991-02-01
910075
A quasi-dimensional computer simulation of the turbocharged spark-ignition engine has been developed in order to study system performance as various design parameters and operating conditions are varied. The simulation is of the “filling and emptying” type. Quasi-steady flow models of the compressor, intercooler, manifolds, turbine, wastegate, and ducting are coupled with a multi-cylinder engine model where each cylinder undergoes the same thermodynamic cycle. A turbulent entrainment model of the combustion process is used, thus allowing for studies of the effects of various combustion chamber shapes and turbulence parameters on cylinder pressure, temperature, NOx emissions and overall engine performance. Valve open areas are determined either based on user supplied valve lift data or using polydyne-generated cam profiles which allow for variable valve timing studies.
Technical Paper

A Telemetry Linkage System for Piston Temperature Measurements in a Diesel Engine

1991-02-01
910299
A telemetry linkage system has been developed for piston temperature measurements in a direct-injection diesel engine. In parallel with the development of the telemetry linkage system, fast response thermocouples were installed at three piston locations - two on the bowl surface and one on the crown surface. A novel design was used to achieve electrical continuity between the piston and the connecting rod by means of a flexible steel strap pivoted on the piston skirt. The telemetry linkage system was then used to transport the electrical wires from the thermocouples to the external data acquisition system. A series of tests was run to determine the effects of location and load on piston surface temperatures. Surface temperature profiles varied substantially among the three locations, reflecting the differences in the combustion and heat flow characteristics of their surrounding regions.
Technical Paper

The Effect of the Location of Knock Initiation on Heat Flux Into an SI Combustion Chamber

1997-10-01
972935
A study has been conducted in order to investigate the effect of the location of knock initiation on heat flux in a Spark-Ignition (SI) combustion chamber. Heat flux measurements were taken on the piston and cylinder head under different knock intensity levels, induced by advancing the spark timing. Tests were performed with two engine configurations, the first with the spark-plug located on the rear side of the chamber and the other having a second non-firing spark-plug placed at the front side of the chamber. The presence of the non-firing spark-plug consistently shifted the location of autoignition initiation from the surface of the piston to its vicinity, without causing a noticeable increase in knock intensity. By localizing the initiation of knock, changes induced in the secondary flame propagation pattern affected both the magnitude and the rate of change of peak heat flux under heavy knock.
Technical Paper

A Prototype Thin-Film Thermocouple for Transient Heat Transfer Measurements in Ceramic-Coated Combustion Chambers

1990-02-01
900691
A prototype chromel-alumel overlapping thin-film thermocouple (TFTC) has been developed for transient heat transfer measurements in ceramic-coated combustion chambers. The TFTC has been evaluated using various metallurgical techniques such as scanning electron microscopy, energy dispersive x-ray detection, and Auger electron spectroscopy. The sensor was calibrated against a standard thermocouple in ice, boiling water, and a furnace at 1000°C. The microstructural and chemical analysis of the thin-films showed the alumel film composition was very similar to the bulk material, while the chromel film varied slightly. An initial set of ceramic plug surface temperatures was taken while motoring and firing the engine at 1900 rpm to verify thermocouple operation. The data shows a 613 K mean temperature and a 55 K swing for the ceramic surface compared with a 493 K mean temperature and a 20 K swing for the metal surface at the same location.
Technical Paper

Optimal Engine Calibration for Individual Driving Styles

2008-04-14
2008-01-1367
Increasing functionality of electronic control units has enhanced our ability to control engine operation utilizing calibration static maps that provide the values of several controllable variables. State-of-the-art simulation-based calibration methods permit the development of these maps with respect to extensive steady-state and limited transient operation of particular driving cycles. However, each individual driving style is different and rarely meets those test conditions. An alternative approach was recently implemented that considers the derivation of these maps while the engine is running the vehicle. In this approach, a self-learning controller selects in real time the optimum values of the controllable variables for the sequences of engine operating point transitions, corresponding to the driver's driving style.
Technical Paper

Thermal Characterization of Combustion Chamber Deposits on the HCCI Engine Piston and Cylinder Head Using Instantaneous Temperature Measurements

2009-04-20
2009-01-0668
Extending the operating range of the gasoline HCCI engine is essential for achieving desired fuel economy improvements at the vehicle level, and it requires deep understanding of the thermal conditions in the cylinder. Combustion chamber deposits (CCD) have been previously shown to have direct impact on near-wall phenomena and burn rates in the HCCI engine. Hence, the objectives of this work are to characterize thermal properties of deposits in a gasoline HCCI engine and provide foundation for understanding the nature of their impact on autoignition and combustion. The investigation was performed using a single-cylinder engine with re-induction of exhaust instrumented with fast-response thermocouples on the piston top and the cylinder head surface. The measured instantaneous temperature profiles changed as the deposits grew on top of the hot-junctions.
Technical Paper

Turbocharger Matching for a 4-Cylinder Gasoline HCCI Engine Using a 1D Engine Simulation

2010-10-25
2010-01-2143
Naturally aspirated HCCI operation is typically limited to medium load operation (∼ 5 bar net IMEP) by excessive pressure rise rate. Boosting can provide the means to extend the HCCI range to higher loads. Recently, it has been shown that HCCI can achieve loads of up to 16.3 bar of gross IMEP by boosting the intake pressure to more than 3 bar, using externally driven compressors. However, investigating HCCI performance over the entire speed-load range with real turbocharger systems still remains an open topic for research. A 1 - D simulation of a 4 - cylinder 2.0 liter engine model operated in HCCI mode was used to match it with off-the-shelf turbocharger systems. The engine and turbocharger system was simulated to identify maximum load limits over a range of engine speeds. Low exhaust enthalpy due to the low temperatures that are characteristic of HCCI combustion caused increased back-pressure and high pumping losses and demanded the use of a small and more efficient turbocharger.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Modeling HCCI Combustion With High Levels of Residual Gas Fraction - A Comparison of Two VVA Strategies

2003-10-27
2003-01-3220
Adjusting the Residual Gas Fraction (RGF) by means of Variable Valve Actuation (VVA) is a strong candidate for controlling the ignition timing in Homogeneous Charge Compression Ignition (HCCI) engines. However, at high levels of residual gas fraction, insufficient mixing can lead to the presence of considerable temperature and composition variations. This paper extends previous modeling efforts to include the effect of RGF distribution on the onset of ignition and the rate of combustion using a multi-dimensional fluid mechanics code (KIVA-3V) sequentially with a multi-zone code with detailed chemical kinetics. KIVA-3V is used to simulate the gas exchange processes, while the multi-zone code computes the combustion event. It is shown that under certain conditions the effect of composition stratification is significant and cannot be captured by a single-zone model or a multi-zone model using only temperature zones.
Technical Paper

Cylinder Pressure Reconstruction and its Application to Heat Transfer Analysis

2004-03-08
2004-01-0922
In this paper, a new method for cylinder pressure reconstruction is proposed based on the concept of a dimensionless pressure curve in the frequency domain. It is shown that cylinder pressure profiles, acquired over a wide range of engine speeds and loads, exhibit similarity. Hence, cylinder pressure traces collapse into a set of dimensionless curves within a narrow range after normalization in the frequency domain. The dimensionless pressure traces can be described by a curve-fit family, which can be used for reconstructing pressure diagrams back into the time domain at any desired condition. The accuracy associated with this method is analyzed and its application to engine heat transfer analysis is demonstrated.
Technical Paper

Effect of Variable Geometry Turbine (VGT) on Diesel Engine and Vehicle System Transient Response

2001-03-05
2001-01-1247
Variable geometry turbines (VGT) are of particular interest to advanced diesel powertrains for future conventional trucks, since they can dramatically improve system transient response to sudden changes in speed and load, characteristic of automotive applications. VGT systems are also viewed as the key enabler for the application of the EGR system for reduction of heavy-duty diesel emissions. This paper applies an artificial neural network methodology to VGT modeling in order to enable representation of the VGT characteristics for any blade (nozzle) position. Following validation of the ANN model of the baseline, fixed geometry turbine, the VGT model is integrated with the diesel engine system. The latter is linked to the driveline and the vehicle dynamics module to form a complete, high-fidelity vehicle simulation.
Technical Paper

Development of a Two-Zone HCCI Combustion Model Accounting for Boundary Layer Effects

2001-03-05
2001-01-1028
The Homogeneous Charge Compression Ignition (HCCI) combustion concept is currently under widespread investigation due to its potential to increase thermal efficiency while greatly decreasing harmful exhaust pollutants. Simulation tools have been developed to explore the implications of initial mixture thermodynamic state on engine performance and emissions. In most cases these modeling efforts have coupled a detailed fuel chemistry mechanism with empirical descriptions of the in-cylinder heat transfer processes. The primary objective of this paper is to present a fundamentally based boundary layer heat transfer model. The two-zone combustion model couples an adiabatic core zone with a boundary layer heat transfer model. The model predicts film coefficient, with approximately the same universal shape and magnitudes as an existing global model.
Technical Paper

Quantification of Local Ozone Production Attributable to Automobile Hydrocarbon Emissions

2001-11-12
2001-01-3760
When automobile hydrocarbons are exhausted into the atmosphere in the presence of NOx and sunlight, ground-level ozone is formed. While researchers have used Maximum Incremental Reactivity (MIR) factors to estimate ozone production, this procedure often overestimates Local Ozone Production (LOP) because it does not consider local atmospheric conditions. In this paper, an enhanced MIR methodology for estimating actual LOP attributable to a vehicle in a particular ozone problem area is presented. In addition to using tabulated MIR factors, the procedure also uses local hydrocarbon reaction terms and a relative mechanistic reactivity term that account for local atmospheric conditions. Through this approach, the effects of hydrocarbon reaction rates, hydrocarbon residence times, and prevailing HC/NOx ratio are accounted for. The procedure is intended to enable automotive engineers to more realistically estimate actual local ozone production resulting from hydrocarbon emissions.
Technical Paper

Compression Ratio Influence on Maximum Load of a Natural Gas Fueled HCCI Engine

2002-03-04
2002-01-0111
This paper discusses the compression ratio influence on maximum load of a Natural Gas HCCI engine. A modified Volvo TD100 truck engine is controlled in a closed-loop fashion by enriching the Natural Gas mixture with Hydrogen. The first section of the paper illustrates and discusses the potential of using hydrogen enrichment of natural gas to control combustion timing. Cylinder pressure is used as the feedback and the 50 percent burn angle is the controlled parameter. Full-cycle simulation is compared to some of the experimental data and then used to enhance some of the experimental observations dealing with ignition timing, thermal boundary conditions, emissions and how they affect engine stability and performance. High load issues common to HCCI are discussed in light of the inherent performance and emissions tradeoff and the disappearance of feasible operating space at high engine loads.
Technical Paper

Development and Validation of a Comprehensive CFD Model of Diesel Spray Atomization Accounting for High Weber Numbers

2006-04-03
2006-01-1546
Modern diesel engines operate under injection pressures varying from 30 to 200 MPa and employ combinations of very early and conventional injection timings to achieve partially homogeneous mixtures. The variety of injection and cylinder pressures results in droplet atomization under a wide range of Weber numbers. The high injection velocities lead to fast jet disintegration and secondary droplet atomization under shear and catastrophic breakup mechanisms. The primary atomization of the liquid jet is modeled considering the effects of both infinitesimal wave growth on the jet surface and jet turbulence. Modeling of the secondary atomization is based on a combination of a drop fragmentation analysis and a boundary layer stripping mechanism of the resulting fragments for high Weber numbers. The drop fragmentation process is predicted from instability considerations on the surface of the liquid drop.
Technical Paper

Design Optimization of the Piston Compounded Adiabatic Diesel Engine Through Computer Simulation

1993-03-01
930986
This paper describes the concept and a practical implementation of piston-compounding. First, a detailed computer simulation of the piston-compounded engine is used to shed light into the thermodynamic events associated with the operation of this engine, and to predict the performance and fuel economy of the entire system. Starting from a baseline design, the simulation is used to investigate changes in system performance as critical parameters are varied. The latter include auxiliary cylinder and interconnecting manifold volumes for a given main cylinder volume, auxiliary cylinder valve timings in relation to main cylinder timings, and degree of heat loss to the coolant. Optimum designs for either highest power density or highest thermal efficiency (54%) are thus recommended. It is concluded that a piston-compounded adiabatic engine concept is a promising future powerplant.
Technical Paper

Optimization of Inlet Port Design in a Uniflow-Scavenged Engine Using a 3-D Turbulent Flow Code

1993-04-01
931181
The finite volume, three-dimensional, turbulent flow code ARIS-3D is applied to the study of the complex flow field through the inlet port and within the cylinder of a uniflow-scavenged engine. The multiblock domain decomposition technique is used to accommodate this complex geometry. In this technique, the domain is decomposed into two blocks, one block being the cylinder and the other being the inlet duct. The effects of inlet duct length, geometric port swirl angle, and number of ports on swirl generating capability are explored. Trade-offs between swirl level and inherent pressure drop can thus be identified, and inlet port design can be optimized.
Technical Paper

Fuel Spray Simulation of High-Pressure Swirl-Injector for DISI Engines and Comparison with Laser Diagnostic Measurements

2003-03-03
2003-01-0007
A comprehensive model for sprays emerging from high-pressure swirl injectors in DISI engines has been developed accounting for both primary and secondary atomization. The model considers the transient behavior of the pre-spray and the steady-state behavior of the main spray. The pre-spray modeling is based on an empirical solid cone approach with varying cone angle. The main spray modeling is based on the Liquid Instability Sheet Atomization (LISA) approach, which is extended here to include the effects of swirl. Mie Scattering, LIF, PIV and Laser Droplet Size Analyzer techniques have been used to produce a set of experimental data for model validation. Both qualitative comparisons of the evolution of the spray structure, as well as quantitative comparisons of spray tip penetration and droplet sizes have been made. It is concluded that the model compares favorably with data under atmospheric conditions.
Technical Paper

A Global Model for Steady State and Transient S.I. Engine Heat Transfer Studies

1996-02-01
960073
A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The success of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper.
X