Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Analysis of Premixed Charge Compression Ignition Combustion With a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model

2005-04-11
2005-01-0115
We have developed a methodology for analysis of Premixed Charge Compression Ignition (PCCI) engines that applies to conditions in which there is some stratification in the air-fuel distribution inside the cylinder at the time of combustion. The analysis methodology consists of two stages: first, a fluid mechanics code is used to determine temperature and equivalence ratio distributions as a function of crank angle, assuming motored conditions. The distribution information is then used for grouping the mass in the cylinder into a two-dimensional (temperature-equivalence ratio) array of zones. The zone information is then handed on to a detailed chemical kinetics model that calculates combustion, emissions and engine efficiency information. The methodology applies to situations where chemistry and fluid mechanics are weakly linked.
Technical Paper

Warmup Limitations on Thermal Reactor Oxidation

1973-02-01
730201
Warmup of the Du Pont model V reactor during unchoked engine operation with air injection has been characterized by a nonreactive period, followed by a transition to an ignited condition. The early period is quenched by heat loss. The transition is gradual for hydrocarbons, but more abrupt for carbon monoxide. Model building for the warmup period is directed to the objective of developing a rapid computer simulation to predict light-off times and temperature histories for various reactor designs and operating conditions. Reactor gas temperature and chemical conversions are calculated as solutions for an ideal backmix reactor. Heat balances maintain a record of all reactor metal temperatures for the given configuration. Heat transfer by radiation, convection, and conduction is considered. The presence of a hot spot in the reactor has a strong effect on time to light-off. In addition to lowering the time, such an ignition source shows a great sensitivity to combustible concentration.
X