Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Use of the Wigner Distribution to Identify Wave-Types in Multi-Element Structures

1993-05-01
931286
In this paper it is shown that time-frequency analysis of a transient structural response may be used to identify the wave-types carrying significant energy through a multi-element structure. The identification of various wave-types is possible since each is characterized by its own dispersion relation, with the result that each wave-type may be associated with characteristic features in the time-frequency domain representation of a structural response. For multi-element structures, propagating energy can be converted from one wave-type to another at the junction of the elements. Consequently, for those structures, the characteristic features in the time-frequency domain consist of the superposition of features associated with propagation in each element. In the work described here, the Wigner Distribution has been used to obtain time-frequency domain representations of structural transient responses.
Technical Paper

Correlation of Tire Intensity Levels and Passby Sound Pressure Levels

1995-05-01
951355
The object of the work reported here was to relate the acoustic intensity level measured near the contact patch of a driven tire on a passenger vehicle with the passby noise levels measured at a sideline microphone during coast and cruise conditions. Based on those measurements it was then possible to estimate the tire noise contribution to the passby level measured when the vehicle under test was accelerating. As part of this testing program, data was collected using five vehicles at fourteen passby sites in the United States: in excess of 800 data sets were obtained.
Technical Paper

Sound Radiation Control Resulting from Tire Structural Vibration

2005-05-16
2005-01-2521
The objective here was to study the control of sound radiation resulting from the structural vibration of a tire excited at one point. First, the tire was modeled as an orthotropic shell by using finite elements and the effect of various tire material parameters on structural wave propagation and the associated sound radiation was estimated. The parameters that were effective at controlling structural wave propagation were then identified. In addition, the radiation field characteristics in the space surrounding a tire placed on a rigid ground were analyzed by using radiation mode analysis. Based on these analyses, a strategy for reducing the radiated sound levels by modifying the tire parameters from a base set was determined. An improved set of material parameters was identified that resulted in reduced sound radiation within a specified target frequency region.
Technical Paper

Transfer Matrix Approach to the Estimation of the Fundamental Acoustical Properties of Noise Control Materials

1999-05-17
1999-01-1667
A new method for evaluating the acoustical properties of porous materials is described here. To implement the procedure, a two-microphone standing wave tube was modified to include: a new sample holder; a section that accommodated a second pair of microphones downstream of the sample holder; and an approximately anechoic termination. A four-point sound pressure method was then used to estimate the two-by-two transfer matrix of the material. The transfer matrix can then be used to determine the wave number and characteristic impedance of the material. The procedure has been used to estimate the acoustical properties of two glass fiber materials.
X