Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of an In-Cylinder Heat Transfer Model with Compressibility Effects on Turbulent Prandtl Number, Eddy Viscosity Ratio and Kinematic Viscosity Variation

2009-04-20
2009-01-0702
In-cylinder heat transfer has strong effects on engine performance and emissions and heat transfer modeling is closely related to the physics of the thermal boundary layer, especially the effects of conductivity and Prandtl number inside the thermal boundary layer. Compressibility effects on the thermal boundary layer are important issues in multi-dimensional in-cylinder heat transfer modeling. Nevertheless, the compressibility effects on kinematic viscosity and the variation of turbulent Prandtl number and eddy viscosity ratio have not been thoroughly investigated. In this study, an in-cylinder heat transfer model is developed by introducing compressibility effects on turbulent Prandtl number, eddy viscosity ratio and kinematic viscosity variation with a power-law approximation. This new heat transfer model is implemented to a spark-ignition engine with a coherent flamelet turbulent combustion model and the RNG k- turbulence model.
Technical Paper

Characteristics of Methanol and Iso-Octane Under Flashing and Non-Flashing Conditions in ECN-G Spray

2022-03-29
2022-01-0496
This paper investigated the spray characteristics of methanol under the flash and non-flash boiling conditions defined by the Engine Combustion Network (ECN) Spray G. As a counterpart, the spray features of iso-octane were also simulated and compared to methanol. The Volume of Fluid (VOF) approach under the Eulerian scheme was employed to model the internal nozzle flow details, which information was used to initialize the spray parcels and taken as input for the Lagrangian simulations, namely, the one-way coupling method. Since the Eulerian high-fidelity simulations allow capturing the effects of the flow inside the non-symmetrical injector, the rate of injection (ROI) profile, discharge coefficient, and plume angle et al. are not required for the Lagrangian simulations. The simulation results show that the flash boiling led to longer penetrations and higher evaporation compared to the non-flash boiling condition for both fuels.
Technical Paper

Investigation of the Engine Combustion Network Spray A Characteristics using Eulerian and Lagrangian Models

2022-03-29
2022-01-0507
This work presents a numerical study of the Spray A (n-dodecane) characteristics using Eulerian and Lagrangian models in a finite-volume framework. The standard k-ε turbulence model was applied for the spray simulations. For Eulerian simulations, the X-ray measured injector geometries from the Engine Combustion Network (ECN) were employed. The High-Resolution Interface Capturing (HRIC) scheme coupled with a cavitation model was utilized to track the fluid-gas interface. Simulations under both the cool and hot ambient conditions were performed. The effects of various grid sizes, turbulence constants, nozzle geometries, and initial gas volume within the injector sac on the modeling results were evaluated. As indicated by the Eulerian simulation results, no cavitation was observed for the Spray A injector; a minimum mesh size of 15.6 μm could achieve a reasonably convergent criterion; the nominal nozzle geometry predicted similar results to the X-ray measured nozzle geometry.
X