Refine Your Search

Topic

Search Results

Journal Article

Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers

2009-06-15
2009-01-1939
EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40–90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature.
Journal Article

Strategy for Mode Transition between Low Temperature Combustion and Conventional Combustion in a Diesel Engine

2013-09-08
2013-24-0058
Mode transition between low temperature combustion (LTC) and conventional combustion was performed by changing the exhaust gas recirculation (EGR) rate from 60% to 0% or vice versa in a light duty diesel engine. The indicated mean effective pressure (IMEP) before mode transition was set at 0.45 MPa, representing the maximum load of LTC in this research engine. Various engine operating parameters (rate of EGR change, EGR path length, and residual gas) were considered in order to investigate their influence on the combustion mode transition. The characteristics of combustion mode transition were analyzed based on the in-cylinder pressure and hydrocarbon (HC) emission of each cycle. The general results showed that drastic changes of power output, combustion noise, and HC emission occurred during the combustion mode transition due to the improper injection conditions for each combustion mode.
Technical Paper

The Influence of the Operating Duty Cycles on the Composition of Exhaust Gas Recirculation Cooler Deposits of Industrial Diesel Engines

2020-04-14
2020-01-1164
Exhaust Gas Recirculation (EGR) coolers are commonly used in on-road and off-road diesel engines to reduce the recirculated gas temperature in order to reduce NOx emissions. One of the common performance behaviors for EGR coolers in use on diesel engines is a reduction of the heat exchanger effectiveness, mainly due to particulate matter (PM) deposition and condensation of hydrocarbons (HC) from the diesel exhaust on the inside walls of the EGR cooler. According to previous studies, typically, the effectiveness decreases rapidly initially, then asymptotically stabilizes over time. Prior work has postulated a deposit removal mechanism to explain this stabilization phenomenon. In the present study, five field aged EGR cooler samples that were used on construction machines for over 10,000 hours were analyzed in order to understand the deposit structure as well as the deposit composition after long duration use.
Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 2

2016-04-05
2016-01-0186
Exhaust gas recirculation (EGR) coolers are used on diesel engines to reduce peak in-cylinder flame temperatures, leading to less NOx formation during the combustion process. There is an ongoing concern with soot and hydrocarbon fouling inside the cold surface of the cooler. The fouling layer reduces the heat transfer efficiency and causes pressure drop to increase across the cooler. A number of experimental studies have demonstrated that the fouling layer tends to asymptotically approach a critical height, after which the layer growth ceases. One potential explanation for this behavior is the removal mechanism derived by the shear force applied on the soot and hydrocarbon deposit surface. As the deposit layer thickens, shear force applied on the fouling surface increases due to the flow velocity growth. When a critical shear force is applied, deposit particles start to get removed.
Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 1

2016-04-05
2016-01-0183
Exhaust Gas Recirculation (EGR) coolers are commonly used in diesel and modern gasoline engines to reduce the re-circulated gas temperature. A common problem with the EGR cooler is a reduction of the effectiveness due to the fouling layer primarily caused by thermophoresis, diffusion, and hydrocarbon condensation. Typically, effectiveness decreases rapidly at first, and asymptotically stabilizes over time. There are several hypotheses of this stabilizing phenomenon; one of the possible theories is a deposit removal mechanism. Verifying such a mechanism and finding out the correlation between the removal and stabilization tendency would be a key factor to understand and overcome the problem. Some authors have proposed that the removal is a possible influential factor, while other authors suggest that removal is not a significant factor under realistic conditions.
Journal Article

An EGR Cooler Fouling Model: Experimental Correlation and Model Uses

2017-03-28
2017-01-0535
Thermal effectiveness of Exhaust Gas Recirculation (EGR) coolers used in diesel engines can progressively decrease and stabilize over time due to inner fouling layer of the cooler tubes. Thermophoretic force has been identified as the major cause of diesel exhaust soot fouling, and models are proposed in the literature but improvements in simulation are needed especially for the long-term trend of soot deposition. To describe the fouling stabilization behavior, a removal mechanism is required to account for stabilization of the soot layer. Observations from previous experiments on surrogate circular tubes suggest there are three primary factors to determine removal mechanisms: surface temperature, thickness, and shear velocity. Based on this hypothesis, we developed a 1D CFD fouling model for predicting the thermal effectiveness reduction of real EGR coolers. The model includes the two competing mechanisms mentioned that results in fouling balance.
Journal Article

Improvement of DME HCCI Engine Performance by Fuel Injection Strategies and EGR

2008-06-23
2008-01-1659
The combustion and exhaust emission characteristics of a DME fueled HCCI engine were investigated. Different fuel injection strategies were tested under various injection quantities and timings with exhaust gas recirculation (EGR). The combustion phase in HCCI was changed by an in-cylinder direct injection and EGR, due to changes in the in-cylinder temperature and mixture homogeneity. The gross indicated mean effective pressure (IMEPgross) increased and the hydrocarbon (HC) and carbon monoxide (CO) emissions decreased as the equivalence ratio was augmented. The IMEPgross with direct injection was greater than with the port injection due to retarded ignition timing resulting from latent heat of direct injected DME fuel. It was because that most of burn duration was completed before top dead center owing to higher ignitability for DME with high cetane number. However, HC and CO emissions were similar for both injection locations.
Journal Article

Impact of High Sulfur Military JP-8 Fuel on Heavy Duty Diesel Engine EGR Cooler Condensate

2008-04-14
2008-01-1081
Low-sulfur “clean” diesel fuel has been mandated in the US and Europe. However, quality of diesel fuel, particularly the sulfur content, varies significantly in other parts of the world. Due to logistical issues in various theaters of operation, the Army is often forced to rely on local fuel supplies, which exposes vehicles to diesel fuel or jet fuel (JP-8) with elevated levels of sulfur. Modern engines typically use cooled Exhaust Gas Recirculation (EGR) to meet emissions regulations. Using high-sulfur fuels and cooled EGR elevates problems associated with cooler fouling and corrosion of engine components. Hence, an experimental study has been carried out in a heavy-duty diesel engine running on standard JP-8 fuel and fuel doped with 2870 ppm of sulfur. Gas was sampled from the EGR cooler and analyzed using a condensate collection device developed according to a modified ASTM 3226-73T standard. Engine-out emissions were analyzed in parallel.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Technical Paper

Operating Range of Low Temperature Diesel Combustion with Supercharging

2009-04-20
2009-01-1440
Low temperature diesel combustion with a large amount of exhaust gas recirculation in a direct injection diesel engine was investigated. Tests were carried out under various engine speeds, injection pressures, injection timings, and injection quantities. Exhaust emissions and brake specific fuel consumption were measured at different torque and engine speed conditions. High rates of exhaust gas recirculation led to the simultaneous reduction of nitrogen oxide and soot emissions due to a lower combustion temperature than conventional diesel combustion. However, hydrocarbon and carbon monoxide emissions increased as the combustion temperature decreased because of incomplete combustion and the lack of an oxidation reaction. To overcome the operating range limits of low temperature diesel combustion, increased intake pressure with a modified turbocharger was employed.
Technical Paper

Modeling HCCI Combustion With High Levels of Residual Gas Fraction - A Comparison of Two VVA Strategies

2003-10-27
2003-01-3220
Adjusting the Residual Gas Fraction (RGF) by means of Variable Valve Actuation (VVA) is a strong candidate for controlling the ignition timing in Homogeneous Charge Compression Ignition (HCCI) engines. However, at high levels of residual gas fraction, insufficient mixing can lead to the presence of considerable temperature and composition variations. This paper extends previous modeling efforts to include the effect of RGF distribution on the onset of ignition and the rate of combustion using a multi-dimensional fluid mechanics code (KIVA-3V) sequentially with a multi-zone code with detailed chemical kinetics. KIVA-3V is used to simulate the gas exchange processes, while the multi-zone code computes the combustion event. It is shown that under certain conditions the effect of composition stratification is significant and cannot be captured by a single-zone model or a multi-zone model using only temperature zones.
Technical Paper

Effects of Stratified EGR on the Performance of a Liquid Phase LPG Injection Engine

2004-03-08
2004-01-0982
Exhaust gas recirculation (EGR) and lean burn utilize the diluents into the engine cylinder to control combustion leading to enhanced fuel economy and reduced emissions. However, the occurrence of excessive cyclic variation with high diluent rates, brings about an undesirable combustion instability within the engine cylinder resulting in the deterioration of both engine performance and emissions. Proper stratification of mixture and diluents could improve the combustion stability under high diluent environment. EGR stratification within the cylinder was made by adopting a fast-response solenoid valve in the midst of EGR line and controlling its timing and duty. With EGR in both homogeneous mode and stratified mode, in-cylinder pressure and emissions were measured. The thermodynamic heat release analysis showed that the burning duration was decreased in case of stratified EGR. It was found that the stratification of EGR hardly affected the emissions.
Technical Paper

Effect of Variable Geometry Turbine (VGT) on Diesel Engine and Vehicle System Transient Response

2001-03-05
2001-01-1247
Variable geometry turbines (VGT) are of particular interest to advanced diesel powertrains for future conventional trucks, since they can dramatically improve system transient response to sudden changes in speed and load, characteristic of automotive applications. VGT systems are also viewed as the key enabler for the application of the EGR system for reduction of heavy-duty diesel emissions. This paper applies an artificial neural network methodology to VGT modeling in order to enable representation of the VGT characteristics for any blade (nozzle) position. Following validation of the ANN model of the baseline, fixed geometry turbine, the VGT model is integrated with the diesel engine system. The latter is linked to the driveline and the vehicle dynamics module to form a complete, high-fidelity vehicle simulation.
Technical Paper

Multi-Dimensional Modeling of NO and Soot Emissions with Detailed Chemistry and Mixing in a Direct Injection Natural Gas Engine

2002-03-04
2002-01-1112
This work reports the development and application of multi-dimensional ignition, combustion and emissions models that account for detailed chemistry and mixing effects in a direct injection engine simulation. A detailed chemical reaction mechanism, consisting of 24 species and 104 reactions, is used for increased accuracy of emissions predictions. Turbulent combustion is represented using a modified Eddy Dissipation Concept (EDC) model to account for mixing effects. The soot model includes all aspects of soot formation and destruction. Particle transport equations are used to realistically track transport of the soot particles formed. All computational sub-models developed in this work have been implemented in a modified version of the KIVA-3V code. In order to illustrate the behavior of the new models, soot and NO emissions have been predicted at different operating conditions by varying injection timing, exhaust gas recirculation (EGR) and injection pressure.
Technical Paper

The Impact of Exhaust Gas Recirculation on Performance and Emissions of a Heavy-Duty Diesel Engine

2003-03-03
2003-01-1068
This work studies the complex interactions resulting from the application and control of Exhaust Gas Recirculation (EGR) on a production heavy-duty diesel engine system, and its effectiveness in reducing NOx emissions. The coupling between EGR, the Variable Geometry Turbocharger (VGT) and the EGR cooler critically affects boost pressure, air/fuel ratio (A/F), combustion efficiency and pumping work. It is shown that EGR provides an effective means for reducing flame temperatures and NOx emissions, particularly under low A/F ratio conditions. However, engine thermal efficiency tends to decrease with EGR as a result of decreasing indicated work and increasing pumping work. Combustion deterioration is predominant at higher load, low speed and low boost conditions, due to a significant decrease of A/F ratio with increasing EGR.
Technical Paper

Experimental Studies of EGR Cooler Fouling on a GDI Engine

2016-04-05
2016-01-1090
Cooled EGR provides benefits in better fuel economy and lower emissions by reducing knocking tendency and decreasing peak cylinder temperature in gasoline engines. However, GDI engines have high particle emissions due to limited mixing of fuel and air, and these particle emissions can be a major source of EGR cooler fouling. In order to improve our knowledge of GDI engine EGR cooler fouling, the effects of tube geometry and coolant temperature on EGR cooler performance and degradation were studied using a four cylinder 2.0L turbocharged GDI engine. In addition, deposit microstructure was analyzed to explore the nature of deposits formed under GDI engine operation. The results of this study showed that a dented tube geometry was more effective in cooling the exhaust gas than a smooth tube due to its large surface area and turbulent fluid motion. However, more deposits were accumulated and higher effectiveness loss was observed in the dented tube.
Technical Paper

Bridging the Gap between HCCI and SI: Spark-Assisted Compression Ignition

2011-04-12
2011-01-1179
Homogeneous charge compression ignition (HCCI) has received much attention in recent years due to its ability to reduce both fuel consumption and NO emissions compared to normal spark-ignited (SI) combustion. However, due to the limited operating range of HCCI, production feasible engines will need to employ a combination of combustion strategies, such as stoichiometric SI combustion at high loads and leaner burn spark-assisted compression ignition (SACI) and HCCI at intermediate and low loads. The goal of this study was to extend the high load limit of HCCI into the SACI region while maintaining a stoichiometric equivalence ratio. Experiments were conducted on a single-cylinder research engine with fully flexible valve actuation. In-cylinder pressure rise rates and combustion stability were controlled using cooled external EGR, spark assist, and negative valve overlap. Several engine loads within the SACI regime were investigated.
Technical Paper

Mode Transition between Low Temperature Combustion and Conventional Combustion with EGR and Injection Modulation in a Diesel Engine

2011-04-12
2011-01-1389
Mode transition between low temperature combustion and conventional combustion was investigated in a direct injection diesel engine. Low temperature diesel combustion was realized by means of high exhaust gas recirculation rate (69~73%) and early injection timing (-28~ -16 crank angle degree after top dead center) compared with those (20% exhaust gas recirculation rate and -8 crank angle degree after top dead center) of conventional combustion. Tests were carried out at different engine speeds and injection pressures. Exhaust gas recirculation rate was changed transiently by controlling each throttle angle for fresh air and exhaust gas recirculation to implement mode transition. Various durations for throttle transition were applied to investigate the effect of speed change of exhaust gas recirculation rate on the characteristics of mode transition.
Technical Paper

Improvement of Premixed Compression Ignition Combustion using Various Injector Configurations

2011-04-12
2011-01-1357
Premixed compression ignition (PCI) combustion was implemented using advanced injection strategy and exhaust gas recirculation in a direct-injection single-cylinder diesel engine. The injection timing swept experiment using a baseline injector, which had an injection angle of 146° and 8 nozzle holes, obtained three types of combustion regime: conventional diesel combustion for an injection timing of 10° CA (crank angle) BTDC (before top dead center), PCI combustion for an injection timing of 40° CA BTDC and homogeneous charge compression ignition (HCCI) combustion for an injection timing of 80° CA BTDC. PCI combustion can be verified by burn duration analysis. The burn duration, which was defined as the period from 10% to 90% of the accumulated heat release, was very short in PCI combustion but not in the others. PCI combustion with an injection timing of 40° CA BTDC was achieved in a range of an exhaust gas recirculation (EGR) rate from 0% to around 40%.
X