Refine Your Search

Topic

Search Results

Technical Paper

Optimization of Substrate/Washcoat Interaction for Improved Catalyst Durability

1991-02-01
910372
The substrate/washcoat systems which preserve both the mechanical and thermal attributes of cordierite substrates are most desirable for prolonged durability of automotive catalysts. This paper provides a micromechanics viewpoint of substrate/washcoat composite whose properties are predictable, measurable and relevant to catalyst durability. The micromechanics model helps quantify substrate/washcoat interaction which controls the long-term catalyst performance. Three different examples of substrate/washcoat systems are used here to illustrate the optimization process during the development of new substrates or washcoat technologies to meet the more stringent emission and durability requirements of advanced catalysts for the 1990s.
Technical Paper

Isostatic Strength of Porous Cordierite Ceramic Monoliths

1991-02-01
910375
The isostatic strength of porous cordierite ceramic monoliths plays an important role during canning and subsequent operation of automotive catalysts. Its value depends on wall porosity, cell geometry, skin thickness and morphology, monolith size and contour, and substrate/washcoat interaction. If the stresses induced by canning loads and closure speeds exceed the isostatic strength, the monolith may exhibit either crushing or shear type failure. This paper presents the room temperature isostatic strength data for coated and uncoated ceramic monoliths of different contour, size, and cell geometry. The applied isostatic load on the monolith is translated into stresses in the porous cell wall using both an analytical model and finite element analysis. It is found that the failure criteria are governed by the fundamental tensile and compressive strengths of the cell wall.
Technical Paper

Physical Durability of Thin Wall Ceramic Substrates

1998-10-19
982635
Significant advances in composition and the manufacturing process have led to thin wall cordierite ceramic substrates with low thermal mass, high surface area, and large open frontal area-properties that are critical for fast light-off, high conversion efficiency and low back pressure. Indeed, such substrates are ideal catalyst supports for meeting the ever-stringent emissions regulations, ala SULEV and ULEV, as demonstrated by recent performance data1. This paper focuses on the physical durability of 400/4 and 600/4 cordierite ceramic substrates. In particular, it presents strength, fatigue, and modulus data which influence the mechanical durability. In addition, it presents thermal expansion data which impact the thermal durability. Both of these durabilities are examined as a function of operating temperature.
Technical Paper

Durability and Performance of Thin Wall Ceramic Substrates

1999-01-13
990011
The stringent emissions standards in the late 1990's like NLEV, ULEV and SULEV have led to major modifications in the composition and design of ceramic substrates. These changes have been necessitated to reduce cold start emissions, meet OBD-II requirements, and to ensure 100,000 mile durability requirement in a cost-effective manner. This paper presents the key advances in ceramic substrates which include lower thermal expansion, lighter weight, higher surface area and improved manufacturing process all of which help meet performance requirements. In addition to above benefits, the compressive and tensile strengths of lightweight substrates, as well as their thermal shock resistance, are found to be adequate following the application of high surface area alumina washcoat. The strength properties are crucial for ensuring safe handling of the substrate during coating and canning and for its long term mechanical durability in service.
Technical Paper

Experimental Verification of Residual Compression in Tempered Automotive Glass with Holes

2003-01-18
2003-26-0012
Tempered float glass is commonly used for both side windows and backlites in the automotive industry. The success of such products is primarily attributed to high level of residual compression, following tempering, which provides abrasion resistance as well as 3X higher functional strength to sustain mechanical, vibrational and thermal stresses during the vehicle's lifetime. Certain applications of tempered glass, however, require mounting holes whose surface-finish must be controlled carefully to withstand transient tensile stresses during tempering. Simultaneously, the nature and magnitude of residual compression at the hole must provide sufficient robustness to bear mounting, vibrational and thermal stresses throughout the life of the vehicle. This paper presents (i) analysis of residual compression at the hole, (ii) measurement of biaxial strength of annealed glass with hole at center, and (iii) measurement of biaxial strength of tempered glass with hole at center.
Technical Paper

Impact of Washcoat Formulation on Properties and Performance of Cordierite Ceramic Converters

1991-10-01
912370
The dual requirement of high conversion efficiency and 50K mile durability for cordierite ceramic converters is achievable through optimization of washcoat and catalyst formulation. This paper presents new data for high temperature physical properties, light-off performance, conversion efficiency and pressure drop through an oval cordierite ceramic converter with triangular cell structure and two different washcoat formulations; namely standard vs high-tech. Both of the washcoat systems have a beneficial effect on strength properties with nominal impact on thermal shock resistance. Both the standard and high-tech catalysts provide identical light-off performance for CO, HC and NOx conversion. The high-tech washcoat and catalyst system, in particular, provides consistently superior conversion efficiency for CO, HC and NOx. The pressure drop across the catalyst depends on hydraulic diameter and is only 8% higher for high-tech washcoat than for standard washcoat.
Technical Paper

High Temperature Creep Behavior of Ceramic and Metal Substrates

1991-02-01
910374
The high temperature creep data for radial specimens, cut from metal and ceramic substrates and subjected to compressive loads representative of mounting and thermal pressure are presented as function of load and temperature. These data show that the creep resistance of metallic specimens under sustained loading varies with temperature and is orders of magnitude lower than that of ceramic specimens. The observed creep deformation in metallic specimens reduces their open frontal area and hydraulic diameter with potentially adverse impact on pressure drop across the metallic substrate.
Technical Paper

Ceramic Converter Technology for Automotive Emissions Control

1991-09-01
911736
This paper reviews the development and successful application of ceramic catalytic converters for controlling automotive exhaust emissions. It presents the scientific rationale for designing the high surface area substrate to meet both performance and durability requirements. This is followed by a step-by-step design process for each of the converter components. The initial design stage focuses on understanding automaker's requirements and optimizing component design commensurate with them. The intermediate stage involves laboratory testing of converter components in simulated environment and ensuring component compatibility from durability point of view. The final design stage addresses the critical tests on converter assembly to ensure performance and field durability. In addition, it examines the necessary trade-offs and associated design modifications and evaluates their impact on warranty cost for system failure.
Technical Paper

Design Considerations for Diesel Flow-Through Converters

1992-02-01
920145
The large frontal area cordierite ceramic flow-through converter for diesel emissions must meet the 290K vehicle mile durability requirement, almost a six fold increase over that of automotive converters. This paper compares the size, the geometry and the operating conditions of automotive vs. diesel converters and suggests ways to design the converter system to meet the challenging durability requirements without compromising its performance with respect to back pressure and conversion efficiency. It is shown that the mechanical durability of the system, which is critical for meeting the 290K vehicle mile durability, can best be met by ensuring good compatibility between the substrate and washcoat and by designing a rugged packaging system with positive mounting pressure under all driving conditions.
Technical Paper

Thermal Durability of a Ceramic Wall-Flow Diesel Filter for Light Duty Vehicles

1992-02-01
920143
The thermal durability of a large frontal area cordierite ceramic wall-flow filter for light-duty diesel engine is examined under various regeneration conditions. The radial temperature distribution during burner regeneration, obtained by eight different thermocouples at six different axial sections of a 75″ diameter x 8″ long filter, is used together with physical properties of the filter to compute thermal stresses via finite element analysis. The stress-time history of the filter is then compared with the strength and fatigue characteristics of extruded cordierite ceramic monolith. The successful performance of the filter over as many as 1000 regenerations is attributed to three important design parameters, namely unique filter properties, controlled regeneration conditions, and optimum packaging design. The latter induces significant radial and axial compression in the filter thereby enhancing its strength and reducing the operating stresses.
Technical Paper

Systems Approach to Packaging Design for Automotive Catalytic Converters

1990-02-01
900500
This paper addresses the packaging design for monolithic cordierite ceramic converters to meet the new, stringent durability requirements of the 1990's, while minimizing warranty cost for the automaker. These objectives are best met by using a systems approach during the early phases of packaging design, i.e. by examining design interactions between the ceramic monolith, alumina coating, ceramic mat or wiremesh mounting material with seals, stainless steel can, heatshields, and associated peripheral components. Failure of any one of these components can prove detrimental to converter durability. In this paper we take advantage of overall understanding of the observed failure modes and individual component behavior, and present new data for optimizing the total converter durability through initial design. In particular, the impact of symmetric gas entry, monolith contour, clamshell anisotropy, mount density, stiffener ribs, and heatshield insulation on total durability is highlighted.
Technical Paper

Substrate/Washcoat Interaction in Thin Wall Ceramic Substrates

1999-01-13
990013
Stringent emissions standards for HC, CO and NOx have necessitated the development of thin wall ceramic substrates which offer higher surface area, larger open frontal area and lower thermal mass. Such substrates offer the additional benefit of being compact which make them ideal for manifold mounting in the engine compartment. These attributes of ceramic substrates, following washcoat and catalyst application, translate directly into quick light-off, high conversion efficiency and low back pressure. To preserve these advantages at high operating temperature and still meet 100,000 mile vehicle durability, the thermomechanical interaction between the substrate and thin wall washcoat system must be managed carefully via formulation, % loading and the calcination process. This paper presents the physical properties data for thin wall ceramic substrates before and after the washcoat application.
Technical Paper

Durable Packaging Design for Cordierite Ceramic Catalysts for Motorcycle Application

1993-03-01
930161
The motorcycle emissions regulations for both two-stroke and four-stroke engines, which are receiving worldwide attention, will go into effect in the very near future. To meet these regulations, the motorcycles will require a catalyst in conjunction with the muffler due to space limitations. The combination of high engine speeds, high vibrational acceleration, high HC and CO emissions, high oxidation exotherms, and stringent durability requirements, points to cordierite ceramic substrate as an ideal catalyst support. However, as an integral unit within the muffler, its packaging design must be capable of withstanding isothermal operating conditions which may exceed the upper intumescent temperature limit of the ceramic mat. This paper describes a durable packaging design for the ceramic catalyst which employs a hybrid ceramic mat, special end rings and gaskets, and high strength stainless steel can.
Technical Paper

High Temperature Durability of Electrically Heated Extruded Metal Support

1994-03-01
940782
The design, performance and optimization of the extruded electrically heated metal converter have recently been published(1,2). The present paper focuses on the physical durability of extruded metal EHC support at high temperature representative of operating conditions. The mechanical, thermal, creep and fatigue properties of Fe-Cr-Al honeycomb structure over 25°-1000°C temperature range are reported. In addition, the stresses arising from mounting and thermal loads are computed via finite element analysis and compared with the high temperature strength of extruded metal EHC support. A safe design stress which predicts 192,000 kilometer durability is estimated from high temperature fatigue behavior of extruded Fe-Cr-Al honeycomb structure.
Technical Paper

High Temperature Compressive Strength of Extruded Cordierite Ceramic Substrates

1995-02-01
950787
High temperature modulus of rupture (MOR) data, published previously, show that the ceramic catalyst supports get stronger with temperature due to the absence of water vapor and closure of microcracks which would otherwise act as stress concentrators [1, 2 and 3]*. The increased MOR value is partially responsible for the excellent durability of ceramic catalyst supports at high temperature. In this paper, we will present the compressive strength data of ceramic substrates at high temperature, namely the crush strength along B-axis and biaxial compressive strength of the whole substrate. Since the honeycomb strength is directly related to that of the individual cell wall, the compressive strength should also increase with temperature similar to the modulus of rupture. Accordingly, the ceramic substrates are capable of supporting higher mounting pressures exerted by the intumescent mat at high temperature [4].
Technical Paper

Durability of Ceramic Catalytic Converters for Motorcycles

1995-09-01
951768
Motorcycle exhaust emission standards throughout the world are becoming more stringent. Emission control systems utilizing the catalytic converter are already in production in Taiwan for 2-stroke engine motorcycles. Catalysts designed for 2-stroke engines encounter a more severe exhaust environment than do those designed for 4-stroke engines. The two aspects of increased severity are the higher temperatures and higher stresses due to engine vibrations. Precious metal catalysts have been designed to operate in the thermal environment of 2-stroke engines and such catalysts have been successfully applied to both metal and ceramic substrates. However, until now, only the metal substrate catalysts have been utilized in motorcycle application. Ceramic based catalysts have not been considered because the mounting material that holds the catalyst substrate in place did not have enough durability to withstand the thermal/vibrational forces encountered in 2-stroke engine exhaust.
Technical Paper

Robust Packaging System for Diesel/Natural Gas Oxidation Catalysts

1996-02-01
960471
The 290,000 vehicle-mile durability requirement for diesel/natural gas oxidation catalysts calls for robust packaging systems which ensure a positive mounting pressure on the ceramic flow-through converter under all operating conditions. New data for substrate/washcoat interaction, intumescent mat performance in dry and wet states, and high temperature strength and oxidation resistance of stainless steels, and canning techniques insensitive to tolerance stack-up are reviewed which help optimize packaging durability. Factors contributing to robustness of converter components are identified and methods to quantify their impact on design optimization are described. CERAMIC FLOW-THROUGH catalysts for diesel exhaust aftertreatment have met with much success since their introduction in 1993.
Technical Paper

Ceramic Catalytic Converters for Motorcycles and Scooters

1996-10-01
962472
The feasibility of using ceramic catalytic converters to reduce HC and CO emissions from 2-stroke motorcycles and scooters was investigated by performing mass emission tests on the Indian Driving Cycle. It was found that it is possible to reduce emissions significantly by installing ceramic catalytic converters at a proper location in the exhaust pipe. A power loss requirement of <5% was also met with ceramic converters. Laboratory tests on mat durability indicated that the ceramic catalytic converter package can offer excellent mechanical durability under Indian driving conditions.
Technical Paper

Mechanical Integrity of Ceramic Monolithic Converters

1981-11-01
811324
The converter assembly consists of a ceramic monolith with racetrack cross-section, a suitable “springy” mat wrapped around it and a clam-shell steel can to contain and guard these components against road hazards. The process to effect this assembly is rather dynamic and introduces directional loads onto the monolith in view of the anisotropic stiffness of the can. If these loads exceed certain values, they may cause failure of the monolith either by crushing it or by shearing it. In this paper we analyze the stiffness of various components of converter assembly, determine the load distribution around the monolith, and modify the design of can and monolith to make the load distribution more favorable. It is concluded that the converter assembly can be optimized and the failure of monoliths, if any, eliminated during closure. The present monoliths do not suffer from such failure.
Technical Paper

Thermal Stresses in Ceramic Wall Flow Diesel Filters

1983-02-01
830079
Thermal stresses constitute a major portion of the total stress which the ceramic wall flow filter experiences in service. The primary source of these stresses is the temperature gradients, both in radial and axial directions, which attain their maximum values during regeneration. The level of particulate loading, the flow rate, the filter size and the mounting design govern the severity of temperature gradients which, together with physical properties and aspect ratio of the filter, dictate the magnitude and distribution of thermal stresses. The filter, the mounting, and the regeneration conditions should be so designed as to minimize these stresses to insure reliable and fracture free performance of the filter throughout the lifetime of the vehicle. In this paper we present a thermal stress model, based on finite element method, which computes stresses in the axisymmetric filter subjected to linear or step temperature gradients in radial and axial directions.
X