Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Impact of Lateral Alignment on the Energy Savings of a Truck Platoon

2020-04-14
2020-01-0594
A truck platooning system was tested using two heavy-duty tractor-trailer trucks on a closed test track to investigate the sensitivity of intentional lateral offsets over a range of intervehicle spacings. The fuel consumption for both trucks in the platoon was measured using the SAE J1321 gravimetric procedure while travelling at 65 mph and loaded to a gross weight of 65,000 lb. In addition, the SAE J1939 instantaneous fuel rate was calibrated against the gravimetric measurements and used as proxy for additional analyses. The testing campaign demonstrated the effects of intervehicle gaps, following-vehicle longitudinal control, and manual lateral control. The new results are compared to previous truck-platooning studies to reinforce the value of the new information and demonstrate similarity to past trends. Fuel savings for the following vehicle was observed to exceed 10% at closer following distances.
Technical Paper

Development and Use of a Vehicle Powertrain Simulation for Fuel Economy and Performance Studies

1990-02-01
900619
A personal computer-based vehicle powertrain simulation (VPS) is developed to predict fuel economy and performance. This paper summarizes the governing equations used in the model. Then the different simulation techniques are described with emphasis on the more complicated time-dependent simulation. The simulation is validated against constant speed and variable cycle test track data obtained for a 5 ton army truck. Then the simulation is used to compare the performance of the 5 ton truck when powered by a cooled and natually aspirated engine, a cooled and turbocharged engine, and an uncooled and turbocharged engine. Studies of the effect of payload, tire efficiency, and drag coefficient on vehicle performance are also conducted, as well as a performance comparison between manual and automatic transmissions. It is concluded that the VPS code can provide good predictions of vehicle fuel economy, and thus is a useful tool in designing and evaluating vehicle powertrains.
Technical Paper

Effect of Variable Geometry Turbine (VGT) on Diesel Engine and Vehicle System Transient Response

2001-03-05
2001-01-1247
Variable geometry turbines (VGT) are of particular interest to advanced diesel powertrains for future conventional trucks, since they can dramatically improve system transient response to sudden changes in speed and load, characteristic of automotive applications. VGT systems are also viewed as the key enabler for the application of the EGR system for reduction of heavy-duty diesel emissions. This paper applies an artificial neural network methodology to VGT modeling in order to enable representation of the VGT characteristics for any blade (nozzle) position. Following validation of the ANN model of the baseline, fixed geometry turbine, the VGT model is integrated with the diesel engine system. The latter is linked to the driveline and the vehicle dynamics module to form a complete, high-fidelity vehicle simulation.
Technical Paper

Engine-in-the-Loop Testing for Evaluating Hybrid Propulsion Concepts and Transient Emissions - HMMWV Case Study

2006-04-03
2006-01-0443
This paper describes a test cell setup for concurrent running of a real engine and a vehicle system simulation, and its use for evaluating engine performance when integrated with a conventional and a hybrid electric driveline/vehicle. This engine-in-the-loop (EIL) system uses fast instruments and emission analyzers to investigate how critical in-vehicle transients affect engine system response and transient emissions. Main enablers of the work include the highly dynamic AC electric dynamometer with the accompanying computerized control system and the computationally efficient simulation of the driveline/vehicle system. The latter is developed through systematic energy-based proper modeling that tailors the virtual model to capture critical powertrain transients while running in real time. Coupling the real engine with the virtual driveline/vehicle offers a chance to easily modify vehicle parameters, and even study two different powertrain configurations.
Technical Paper

New Metrics for Quantifying the Energy Efficiency of Platoons in the Presence of Disturbances

2022-03-29
2022-01-0526
Due to aerodynamic drag reduction, vehicles may have significant energy savings while platooning in close succession. However, when circumstances force active deceleration to maintain the platoon, such as during vehicle cut-ins or grade changes, the aerodynamic efficiency benefits may be undermined by losses in kinetic energy. In this work, a theoretical relationship is derived to correlate the amount of active deceleration a vehicle experiences with energy efficiency. The derived relationship is leveraged to analyze platooning data from the last vehicle in a class 8 vehicle platoon. The data include both two- and four-truck platoons operating under nine different truck-to-truck gap control strategies. Using J1939 CAN data and GPS-estimated grade profiles, off-throttle data were isolated and longitudinal acceleration is estimated as a function of grade using Kalman filtering.
Technical Paper

Validation and Use of SIMULINK Integrated, High Fidelity, Engine-In-Vehicle Simulation of the International Class VI Truck

2000-03-06
2000-01-0288
This work presents the development, validation and use of a SIMULINK integrated vehicle system simulation composed of engine, driveline and vehicle dynamics modules. The engine model links the appropriate number of single-cylinder modules, featuring thermodynamic models of the in-cylinder processes with transient capabilities to ensure high fidelity predictions. A detailed fuel injection control module is also included. The engine is coupled to the driveline, which consists of the torque converter, transmission, differential and prop shaft and drive shafts. An enhanced version of the point mass model is used to account for vehicle dynamics in the longitudinal and heave directions. A vehicle speed controller replaces the operator and allows the feed-forward simulation to follow a prescribed vehicle speed schedule.
Technical Paper

Experimental Fuel Consumption Results from a Heterogeneous Four-Truck Platoon

2021-04-06
2021-01-0071
Platooning has the potential to reduce greenhouse gas emissions of heavy-duty vehicles. Prior platooning studies have chiefly focused on the fuel economy characteristics of two- and three-truck platoons, and most have investigated aerodynamically homogeneous platoons with trucks of the same trim. For real world application and accurate return on investment for potential adopters, non-uniform platoons and the impacts of grade and disturbances on a platoon’s fuel economy must also be characterized. This study investigates the fuel economy of a heterogeneous four-truck platoon on a closed test track. Tests were run for one hour at a speed of 45 mph. The trucks used for this study are two 2015 Peterbilt 579’s with a Cummins ISX15 and a Paccar MX-13, and two 2009 Freightliner M915A5’s, one armored and the other unarmored. Many analysis methodologies were leveraged to describe and compare the fuel data, including lap-wise and track-segment analysis.
Technical Paper

Quantifying the Energy Impact of Autonomous Platooning-Imposed Longitudinal Dynamics

2023-04-11
2023-01-0896
Platooning has produced significant energy savings for vehicles in a controlled environment. However, the impact of real-world disturbances, such as grade and interactions with passenger vehicles, has not been sufficiently characterized. Follower vehicles in a platoon operate with both different aerodynamic drag and different velocity traces than while driving alone. While aerodynamic drag reduction usually dominates the change in energy consumption for platooning vehicles, the dynamics imposed on the follow vehicle by the lead vehicle and exogenous disturbances impacting the platoon can negate aerodynamic energy savings. In this paper, a methodology is proposed to link the change in longitudinal platooning dynamics with the energy consumption of a platoon follower in real time. This is accomplished by subtracting a predicted acceleration from measured longitudinal acceleration.
X