Refine Your Search

Search Results

Viewing 1 to 15 of 15
Journal Article

Analysis of Combustion Characteristics and Efficiency Improvement of a Supercharged HCCI Engine Achieved by Using the Different Ignition Characteristics of Gaseous Fuels

2012-10-23
2012-32-0075
This study focused on the use of a two-component fuel blend and supercharging as possible means of overcoming these issues of HCCI combustion. Low-carbon gaseous fuels with clean emissions were used as the test fuels. The specific fuels used were dimethyl ether (DME, cetane number of 55 or higher) that autoignites easily And exhibits pronounced low-temperature oxidation reactions, methane (cetane number of 0) that does not autoignite readily and is the main component of natural gas which is regarded as petroleum substitute, and propane (cetane number of 5) that is a principal component of liquefied petroleum gas. The results of previous investigations have shown that the use of a blended fuel of DME and methane produces a two-stage main combustion process under certain operating conditions, with the result that combustion is moderated.
Technical Paper

Influence of Electrical Supplied Energy and Characteristic Length on the Plasma Jet Ignition

1993-10-01
932750
The investigation regarding the plasma jet ignition was explored by using a combustion vessel. The first purpose is to elucidate the issuing duration and the penetration of hydrogen plasma jet. A temporal change of local electron temperature was measured along the central axis of plasma jet. A small characteristic length of igniter seems favorable with regard to the plasma jet penetration and the generation of high temperature, as compared with the case of the igniter that has the excessive cavity volume. The second purpose is to elucidate relationship between the characteristic length and the combustion enhancement effect, when the excessive volume of cavity and the excessive supplied electrical energy were used. The influence of the characteristic length on the plasma jet penetration and the combustion enhancement differs with the supplied energy. The combustion enhancement seems to be caused by the plasma jet in case of excessive supplied energy.
Technical Paper

Spectroscopic Study of Two-Stage High Temperature Heat Release Behavior in a Supercharged HCCI Engine using Blended Fuels

2011-08-30
2011-01-1788
This study examined the effects of fuel composition and intake pressure on two-stage high temperature heat release characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine. Light emission and absorption spectroscopic measurement techniques were used to investigate the combustion behavior in detail. Chemical kinetic simulations were also conducted to analyze the reaction mechanisms in detail. Blended fuels of dimethyl ether (DME) and methane were used in the experiments. It was found that the use of such fuel blends together with a suitable intake air flow rate corresponding to the total injected heat value gave rise to two-stage heat release behavior of the hot flame, which had the effect of moderating combustion. The results of the spectroscopic measurements and the chemical kinetic simulations revealed that the main reaction of the first stage of the hot flame heat release was one that produced CO from HCHO.
Technical Paper

Measurement of Radical Behavior in Homogeneous Charge Compression Ignition Combustion Using Dimethyl Ether

2003-09-16
2003-32-0006
Attention has recently been focused on homogeneous charge compression ignition (HCCI) as an effective combustion process for resolving issues inherent to the nature of combustion. Dimethyl ether (DME; CH3OCH3) has attracted interest as a potential alternative fuel for compression ignition engines. We measured the HCCI process of DME in a test diesel engine by using a spectroscopic method. Simultaneous measurements were also done on exhaust emissions of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx). Based on the experimental data, this paper discusses the relationship between the equivalence ratio and the observed tendencies.
Technical Paper

Effect of EGR-Induced Hot Residual Gas on Combustion when Operating a Two-Stroke Engine on Alcohol Fuels

2000-10-16
2000-01-2972
In this research, the effect of high-temperature residual gas, resulting from the application of a certain level of EGR, on combustion was investigated using a two-stroke engine and alcohol fuels (ethanol and methanol) and gasoline as the test fuels. Measurements were made of the light emission intensity of the OH radical on the intake and exhaust port sides of the combustion chamber and of the combustion chamber wall temperature (spark plug washer temperature) and the exhaust gas temperature. Data were measured and analyzed in a progression from normal combustion to autoignited combustion to preignition and to knocking operation.
Technical Paper

Influence of Various Biodiesel Fuels on Diesel Engine Performance

2009-11-03
2009-32-0100
The composition ratio of saturated and unsaturated fatty acid methyl esters (FAME) is depended on feedstock. Three FAMEs: soybean (SME), palm (PME) and coconut oil (CME) methyl esters were mixed to make fuels which have different composition ratio. The ignitability of fuel which mainly consisted of unsaturated FAME was inferior. Power was slightly reduced with increasing of mixing ratio of CME; however exhaust gas emissions were improved because CME contained a lot of oxygen atoms. Fuel which was equal mixture SME and CME indicated almost the same ignition characteristic as that of PME because they have same composition ratio.
Technical Paper

A Study of IDI 2-Stroke Cycle Compression Ignition Engine with DME

2009-11-03
2009-32-0063
DME is alternate fuel for diesel engines, however DME has defects such as small lower calorific value, inferior lubricity and weak fuel penetration. To compensate disadvantages, In-direct injection 2-stroke diesel engine with low pressure fuel injection system was proposed. The fuel injection timing near TDC gave good performance because the heat loss of low temperature oxidation reaction reduced. The brake torque and brake thermal efficiency of 2-stroke IDI diesel engine were lower than those of 4-stroke engine. However, the exhaust gas emissions were very low level because the intake air leaked through the exhaust port and the exhaust gas was diluted.
Technical Paper

An Application of Cellulosic Liquefaction Fuel for Diesel Engine - Improvement of Fuel Property by Cellulosic Liquefaction with Plastics -

2013-10-15
2013-32-9174
There are few investigations to change wood biomasses to the industrially available energy, so that a new conversion technology of biomass to liquid fuel has been established by the direct liquefaction process. However, cellulosic liquefaction fuel (for short CLF) cold not mixed with diesel fuel. In this study, the plastic was mixed with wood to improve the solubility of CLF to diesel fuel. CLF made by the direct co-liquefaction process could be stably and completely mixed with diesel fuel in any mixing ratio and CLF included 2 wt.% of oxygen. The test engine was an air-cooled, four-stroke, single cylinder, direct fuel injection diesel engine. In the engine starting condition test, the ignition timing of 5 wt.% CLF mixed diesel fuel was slightly delayed at immediately after the engine started, however the ignition timing was almost the same as diesel fuel after the engine was warmed-up.
Technical Paper

The Effects of the Compression Ratio, Equivalence Ratio, and Intake Air Temperature on Ignition Timing in an HCCI Engine Using DME Fuel

2005-10-12
2005-32-0002
Attention has recently been focused on homogeneous charge compression ignition combustion (HCCI) as an effective combustion process for resolving the essential nature of combustion. Meanwhile, dimethylether (DME) has attracted interest as a potential alternative fuel for compression ignition engines. Authors measured the combustion process of DME HCCI by using a spectroscopic method. A diesel engine was used as the test engine. The results of these analyses showed that changes in the compression ratio, intake air temperature and equivalence ratio influenced the ignition timing in the HCCI combustion process. This paper discusses these effects in reference to the experimental and calculated results.
Technical Paper

A Study on the Practical Application of Cellulosic Liquefaction Fuel for Diesel Engine

2015-11-17
2015-32-0801
In recent years, it has been expected the conversion of wasted biomass to industry available energy. In this study, 80 wt.% of wood and 20 wt.% of polypropylene were liquefied by the mineral oil used as solvent. The liquefied material was distilled, and distillation fraction of temperature from 493 to 573 K was recognized as light oil fraction CLF (Cellulose Liquefaction Fuel) and that from 378 to 493 K was recognized as naphtha fraction CLF. CLFs were blended with light oil and, in engine performance test, mixing ratio of light oil fraction CLF was 5 wt.%, and in vehicle running test, weight mixing ratios were 5 or 10 wt.%. In engine performance test, indicator diagrams and rate of heat releases of light oil fraction CLF 5 wt.% mixed light oil were almost equivalent to those of light oil in all load conditions, and engine performance and exhaust gas emissions were also almost equivalent to light oil.
Technical Paper

An Effect of Bio Diesel Fuel for Low Compression Ratio Diesel Engine

2017-11-05
2017-32-0088
The purpose of this study is to explore an effect of the coconut oil methyl ester (CME) and vegetable oil methyl ester (VME) on a low compression ratio diesel engine performance. CME and VME were produced from coconut oil and vegetable oil with methanol, respectively. Vegetable oil was assumed to contain 60 wt.% of soybean oil and 40 wt.% rapeseed oil. The engine performance was measured in the steady operating condition at 3600 rpm of engine speed. The ignition timings of CME and VME were advanced and the maximum cylinder pressures of CME and VME were higher as compared with the diesel fuel at low compression ratio, because CME and VME consisted of medium chain fatty acid methyl esters. The ignitability of CME was superior to VME, because CME consisted of saturated fatty acid. The brake thermal efficiency of diesel fuel was slightly higher than CME and VME at any compression ratios.
Technical Paper

An Analysis of Conditions Producing Two-Stage Main Combustion Heat Release in a Supercharged HCCI Engine using a Gaseous Fuel Blend

2015-09-01
2015-01-1785
In this study, a detailed analysis was made of supercharged HCCI combustion using a two-component fuel blend of dimethyl ether (DME), which has attracted interest as a potential alternative fuel, and methane. The quantity of fuel injected and boost pressure were varied to investigate the equivalence ratio and operating region conducive to optimal HCCI combustion. The results revealed that varying the boost pressure according to the engine load and applying a suitable equivalence ratio induced two-stage main combustion over a wide load range, making it possible to avoid excessively rapid combustion.
Journal Article

Analysis of Supercharged HCCI Combustion Using a Blended Fuel

2011-11-08
2011-32-0521
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted much interest as a combustion system that can achieve both low emissions and high efficiency. But the operating region of HCCI combustion is narrow, and it is difficult to control the auto-ignition timing. This study focused on the use of a two-component fuel blend and supercharging. The blended fuel consisted of dimethyl ether (DME), which has attracted interest as alternative fuel for compression-ignition engines, and methane, the main component of natural gas. A spectroscopic technique was used to measure the light emission of the combustion flame in the combustion chamber in order to ascertain the combustion characteristics. HCCI combustion characteristics were analyzed in detail in the present study by measuring this light emission spectrum.
Journal Article

A Study of an HCCI Engine Operating on a Blended Fuel of DME and Methane

2011-11-08
2011-32-0522
In this study, experiments were conducted using a blend of two types of fuel with different ignition characteristics. One was dimethyl ether (DME) that has a high cetane number, autoignites easily and displays low-temperature oxidation reaction mechanisms; the other was methane that has a cetane number of zero and does not autoignite easily. A mechanically driven supercharger was provided in the intake pipe to adjust the intake air pressure. Moreover, flame light in the combustion chamber was extracted using a system for observing light emission that occurred in the space between the cylinder head and the cylinder and in the bore direction of the piston crown. The results of previous studies conducted with a supercharged HCCI engine and a blended fuel of DME and methane have shown that heat release of the hot flame is divided into two stages and that combustion can be moderated by reducing the peak heat release rate (HRR).
Technical Paper

A Study of Supercharged HCCI Combustion Using Blended Fuels of Propane and DME

2014-11-11
2014-32-0005
Homogeneous Charge Compression Ignition (HCCI) has attracted a great deal of interest as a combustion system for internal combustion engines because it achieves high efficiency and clean exhaust emissions. However, HCCI combustion has several issues that remain to be solved. For example, it is difficult to control engine operation because there is no physical means of inducing ignition. Another issue is the rapid rate of heat release because ignition of the mixture occurs simultaneously at multiple places in the cylinder. The results of previous investigations have shown that the use of a blended fuel of DME and propane was observed that the overall combustion process was delayed, with that combustion became steep when injected propane much. This study focused on expanding the region of stable engine operation and improving thermal efficiency by using supercharging and blended fuels. The purpose of using supercharging were in order to moderated combustion.
X