Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Optimized E.F.I. for Natural Gas Fueled Engines

1991-08-01
911650
Increasing emphasis on natural gas as a clean, economical, and abundant fuel, encourages the search for the optimum approach to management of fuel, air and combustion to achieve the best results in power, fuel economy and low exhaust emissions. Electronic injection of fuel directly into the throttle body, intake ports or directly into the cylinder offers important advantages over carburetion or mixing valves. This is particularly true in the case of installations in which the gas supply is available at several atmospheres pressure above maximum intake manifold pressure. The use of choked-flow pulse- width-modulated electronic injectors offers precision control over the engine operating range with a wide variety of options for both stoichiometric and lean bum applications. A complete system utilizing commercially available components together with the application, calibration and engine mapping techniques is described.
Technical Paper

Evolution of Heavy Duty Natural Gas Engines - Stoichiometric, Carbureted and Spark Ignited to Lean Burn, Fuel Injected and Micro-Pilot

1997-08-06
972665
Natural gas is a low cost, abundant and clean burning fuel. Current internal combustion engines can be readily adapted to use natural gas fuel either in conjunction with conventional liquid fuels or as dedicated systems. Use of modern electronic controls allows consideration of new engine management strategies that are not practical or even possible with mechanical systems. The preferred approach is pre-mixed lean burn with cylinder-by-cylinder fuel injection and full time control of optimized air/fuel ratio and ignition.
Technical Paper

All Electronic Dual Fuel Injection System for the Belarus D-144 Diesel Engine

1990-08-01
901502
Through the joint efforts of BKM, SPI, AFS and Belarus, an advanced, all- electronic dual fuel system has been developed for retrofit applications on the Belarus D-144, four-cylinder, 4.15 liter, 44.7 KW diesel engine. The system features all electronic control on both full diesel or up to 90 % gas with automatic and instant changeover capability. The existing mechanical diesel injection system was replaced with an all electronic, hydraulically actuated, diesel injection system coupled with timed multi-point electronic injection for the gas system. The control strategy does not utilize inlet throttling typically used on gas fueled engines. The effectiveness of this simplified control system is assumed to be the result of a degree of charge stratification. The D-144 engine is utilized in a wide variety of industrial, farm and highway applications. Special application requirements can be accommodated by programming the EPROM control chip.
Technical Paper

Injection Rate Shaping and High Speed Combustion Analysis-New Tools for Diesel Engine Combustion Development

1990-02-01
900639
This paper addresses both the generation of various injection rate shapes using the accumulator type electronic injector, and their effects on engine combustion and sound level performance as recorded by a 500,000 sample-per-second PC board Engine Analyzer. An advanced hydro-electronic unit injector has been developed by BKM to offer a wide range of readily adjustable injection rate shapes to match a particular engine combustion configuration. The system is adaptable to both fixed (passive) rate shaping and active on-line optimization with electronically adjustable injection timing, fuel quantity, and injection rate. The effects of a range of injection rate shapes on fuel economy, exhaust emission, heat release rate, and noise level are readily available and properly documented within a few minutes of the engine running.
Technical Paper

Extending Lean Limit with Mass-Timed Compression Ignition Using a Catalytic Plasma Torch

1992-08-01
921556
Research on the Catalytic Plasma Torch (CPT) ignition system was conducted this last year at BKM, Inc. in San Diego. The results showed that under certain conditions CPT can not only time ignition properly, but also extend the lean stability limit. This concept is based upon compression ignition of the charge in the CPT's integral pre-chamber. Compression ignition is induced by timed catalytic reduction of the pre-chamber's activation energy. This produces almost instantaneous combustion in the pre-chamber and is divided into multiple high velocity torches to rapidly ignite the main chamber charge. The timing of the ignition event is based on the location of the heated catalyst in the pre-chamber and the mass of the charge inducted into the cylinder. The base timing curve can be modified via current control which effects the catalyst activity. Dynamic modification of the timing event is accomplished by using the catalyst as an in-cylinder hot wire anemometer.
Technical Paper

Development of Pilot Fuel Injection System for CNG Engine

1996-05-01
961100
The paper discusses objectives, approaches and results of the development of a pilot fuel injection system (FIS) for a dedicated, compression ignition, high-speed, heavy duty natural gas/diesel engine. The performance of the pilot FIS is crucial for the success of a dual fuel concept. The Servojet electro-hydraulic, accumulator type fuel system was chosen for the pilot fuel injection. An alternative pilot FIS based on the “water hammer” (WH) effect was also considered. The modifications to a stock 17 min injector is described. Three different types of pilot injector nozzle were investigated: standard Valve Covered Orifice (VCO), modified minisac and new designed, unthrottled pintle. Preliminary results from engine tests proved that the optimum pilot fuel quantity is the minimum quantity. Based on that finding, the pilot FIS design was further optimized.
Technical Paper

Direct Digital Control of Electronic Unit Injectors

1984-02-01
840273
A new type of diesel fuel injection uses a simple, medium-pressure, common-rail system with pressure intensifier and accumulator type unit injectors with digital electronic control to achieve high performance at low cost. The desirable features of high injection pressures with quantity and timing controlled directly by microprocessor are attained with a simple unique system. Data are presented on performance, efficiency, emissions, and relative cost. It is concluded that electronically controlled high pressure injection offers a practical and economical solution for efficient combustion in a diesel engine.
Technical Paper

Effects of Fuel Injection on Diesel Combustion

1988-02-01
880299
Additional data has been analyzed on the effect of engine size on thermal efficiency. The comparison has been expanded to show the trends separately for engines developed by several different manufacturers. The data confirm the conclusion that engines below 2.0 liters per cylinder seem to deteriorate in fuel economy faster than would have been predicted from the behavior of larger engines. It is postulated that such deterioration results from a combination of less than optimum fuel spray, wall wetting, and perhaps a greater heat transfer loss than was anticipated. The paper focuses on engines in the size range under two liters per cylinder and addresses some of the problems to be resolved. Means for generating and controlling fuel spray and injection rate shape are presented along with experimental data on fuel sprays and engine combustion.
Technical Paper

Electronic Fuel Injection for Two-Stroke Cycle Gasoline Engines

1986-09-01
861242
A new method for direct cylinder injection for two-stroke cycle engines is described. The technique utilizes simple hole type nozzles, accumulator injectors, medium pressure (100 bar), pressure metering, and full electronic controls. The objectives of the system are to accomplish, in a single injection, the four essentials of effective fuel injection (a) metered quantity of fuel, (b) desired spatial distribution, (c) timing of injection, (d) complete vaporization prior to the start of combustion. Special techniques such as “cloud-stratified charge” and “skip-fire” are discussed as well as the special design features of the components and control systems. Data presented include details of spray formation and engine performance with dramatic reduction in fuel consumption and exhaust emissions.
Technical Paper

Factors That Affect BSFC and Emissions for Diesel Engines: Part II Experimental Confirmation of Concepts Presented in Part I

1987-02-01
870344
Review of the theories, observations, and trends presented in Part I of this set of papers leads to the projection of certain aspects of injection sprays, mixture preparation, and combustion which may be designed to enhance diesel engine efficiency and reduce unwanted emissions. The basic concept is that control of the size, distribution and time of introduction of fuel droplets will result in a predictable optimized combustion event. Burning rate is controlled by droplet size and not by injection rate. The results of the ideal combustion and mixture preparation models are compared with experimental data and show good correlation. The preference for high-pressure, short-duration, non-wall-wetting and uniformly distributed fuel sprays coupled with controlled fast diffusion burning is clearly evident. With high injection rates, it may be desirable to trade swirl rate for additional combustion air.
Technical Paper

High Pressure Fuel Injection-A Rational Approach to Diesel Engine Efficiency, Emissions, and Economics

1983-11-07
830863
A new type of diesel fuel injection uses a simple, medium-pressure, common-rail system with pressure intensifier and accumulator type unit injectors with direct electronic control to achieve high performance at low cost. The desirable features of high injection pressures with quantity and timing controlled directly by microprocessor are attained with a simple unique system. Data are presented on performance, efficiency, emissions, and relative cost. It is concluded that electronically controlled high pressure injection offers a practical and economical solution for efficient combustion in diesel engines.
X