Refine Your Search

Search Results

Viewing 1 to 6 of 6
Standard

Power Cylinder Blow-By: Blow-By Mechanisms

2007-02-07
HISTORICAL
J2797_200702
This document covers the mechanisms associated with the power cylinder which might affect blow-by. It will not discuss in detail the blow-by mechanisms from other engine subsystems.
Standard

Power Cylinder Blow-by: Blow-by Mechanisms

2022-02-15
CURRENT
J2797_202202
This document covers the mechanisms associated with the power cylinder system which might affect blow-by. It will not discuss in detail the blow-by mechanisms from other systems or engine subsystems.
Standard

Internal Combustion Engines - Piston Ring-Grooves

2018-05-16
HISTORICAL
J2275_201805
There is no ISO standard equivalent to this SAE Standard. This SAE standard identifies and defines the most commonly used terms for piston ring-groove characteristics, specifies dimensioning for groove widths, and demonstrates the methodology for calculation of piston groove root diameter. The requirements of this document apply to pistons and rings of reciprocating internal combustion engines and compressors working under analogous conditions, up to and including 200 mm diameter and 4.5 mm width for compression rings and 8.0 mm width for oil rings. The specifications in this document assume that components are measured at an ambient temperature of 20 °C (68 °F). Tolerances specified in this document represent practical functional limits and do not imply process capabilities.
Standard

Internal Combustion Engines—Piston Ring-Grooves

2010-01-19
HISTORICAL
J2275_201001
There is no ISO standard equivalent to this SAE Standard. This SAE standard identifies and defines the most commonly used terms for piston ring-groove characteristics, specifies dimensioning for groove widths, and demonstrates the methodology for calculation of piston groove root diameter. The requirements of this document apply to pistons and rings of reciprocating internal combustion engines and compressors working under analogous conditions, up to and including 200 mm diameter and 4.5 mm width for compression rings and 8.0 mm width for oil rings. The specifications in this document assume that components are measured at an ambient temperature of 20 °C (68 °F). Tolerances specified in this document represent practical functional limits and do not imply process capabilities.
Standard

Internal Combustion Engines—Piston Ring-Grooves

2007-04-16
HISTORICAL
J2275_200704
There is no ISO standard equivalent to this SAE Standard. This SAE standard identifies and defines the most commonly used terms for piston ring-groove characteristics, specifies dimensioning for groove widths, and demonstrates the methodology for calculation of piston groove root diameter. The requirements of this document apply to pistons and rings of reciprocating internal combustion engines and compressors working under analogous conditions, up to and including 200 mm diameter and 4.5 mm width for compression rings and 8.0 mm width for oil rings. The specifications in this document assume that components are measured at an ambient temperature of 20 °C (68 °F). Tolerances specified in this document represent practical functional limits and do not imply process capabilities.
Standard

INTERNAL COMBUSTION ENGINES—PISTON RING-GROOVES

1996-07-01
HISTORICAL
J2275_199607
There is no ISO standard equivalent to this SAE Standard. This SAE standard identifies and defines the most commonly used terms for piston ring-groove characteristics, specifies dimensioning for groove widths, and demonstrates the methodology for calculation of piston groove root diameter. The requirements of this document apply to pistons and rings of reciprocating internal combustion engines and compressors working under analogous conditions, up to and including 200 mm diameter and 4.5 mm width for compression rings and 8.0 mm width for oil rings. The specifications in this document assume that components are measured at an ambient temperature of 20 °C (68 °F). Tolerances specified in this document represent a six sigma quality level.
X