Refine Your Search

Topic

Search Results

Journal Article

Determination of the Pressure Distribution Beneath Two- and Three-Inch Wide Racing Safety Belts

2008-12-02
2008-01-2977
This study examines the static pressure distribution under both width belts in the shoulder and the pelvis of 15 volunteer subjects. The subjects applied the belt loads to themselves through a lever and pulley system. The configuration of the belts simulated the typical arrangement of a six-point belted upright-seated racing driver. The pressure distribution between the belt and the volunteer's body was determined and recorded with Tek-Scan pressure sensing grids. The paper presents the results of the measurements by comparing the actual area of significant loading beneath the two widths and materials of both lap and shoulder belts. In, general, there no significant increase in loaded area for the wider belts.
Technical Paper

Biomechanical Performance of a New Head and Neck Support

1990-10-01
902312
The heads of auto racing drivers and military pilots are usually not supported so that neck fatigue and injury can be a serious problem. A new Head And Neck Support (HANS) is being developed to reduce head motions and neck loads. The biomechanical performance of HANS has been evaluated by crash victim modeling with CAL 3-D and by impact sled testing with a Hybrid III dummy. Modeling and testing were conducted at 30 and 35 mph BEV and with acceleration directions from the front, right front, and right lateral. The model and test results show that head motions, neck loading, and the potential for neck injury are all significantly reduced with HANS compared to without HANS.
Technical Paper

Biomechanical Investigation of Thoracolumbar Spine Fractures in Indianapolis-type Racing Car Drivers during Frontal Impacts

2006-12-05
2006-01-3633
The purpose of this study is to provide an understanding of driver kinematics, injury mechanisms and spinal loads causing thoracolumbar spinal fractures in Indianapolis-type racing car drivers. Crash reports from 1996 to 2006, showed a total of forty spine fracture incidents with the thoracolumbar region being the most frequently injured (n=15). Seven of the thoracolumbar fracture cases occurred in the frontal direction and were a higher injury severity as compared to rear impact cases. The present study focuses on thoracolumbar spine fractures in Indianapolis-type racing car drivers during frontal impacts and was performed using driver medical records, crash reports, video, still photographic images, chassis accelerations from on-board data recorders and the analysis tool MADYMO to simulate crashes. A 50th percentile, male, Hybrid III dummy model was used to represent the driver.
Technical Paper

Steering Assembly Impacts Using Cadavers and Dummies

1990-10-01
902316
Studies have shown that dummies can be used to study various issues relating to an unrestrained driver's interaction with the steering system in frontal crashes. However, current dummies have limitations in simulation of car occupants and to assess the spectrum of injury types and mechanisms. Human cadaver subjects were used to study abdominal injury and “severe” steering wheel deformation as part of an evaluation of energy absorbing steering systems. A predominant factor influencing abdominal injury in these tests was the impact location of the lower rim, injury being associated with the rim aligned 50 mm below the xiphoid. The dummies developed approximately twice the impact force than the cadaver subjects in these severe tests with a noncompressible column, in part due to the chest of the dummies “bottoming” out on a rigid spine.
Technical Paper

The Effect of Occupant Size on Head Displacement in Frontal Collisions

2007-04-16
2007-01-1503
This paper builds on previous research on the development of a head displacement model for restrained occupants in frontal collisions. Physical and mathematical simulations were performed utilizing the 5th percentile female and 50th percentile male Hybrid III dummies to measure the effect of occupant size, seat belt system design and crash severity on resultant head displacement of occupants in frontal collisions. Sled and simulation accelerations ranged from 10 g to 20 g with delta-V's from 6.6 m/s to 10.0 m/s. Results indicate a difference between the 5th percentile female and 50th percentile male dummies. Preliminary assessment of head displacement as a function of occupant kinetic energy demonstrated good correlation.
Technical Paper

Development of a Finite Element Model of the Human Neck

1998-11-02
983157
A three-dimensional finite element model of a human neck has been developed in an effort to study the mechanics of cervical spine while subjected to impacts. The neck geometry was obtained from MRI scans of a 50th percentile male volunteer. This model, consisting of the vertebrae from C1 through T1 including the intervertebral discs and posterior elements, was constructed primarily of 8-node brick elements. The vertebrae were modeled using linear elastic-plastic materials, while the intervertebral discs were modeled using linear viscoelastic materials. Sliding interfaces were defined to simulate the motion of synovial facet joints. Anterior and posterior longitudinal ligaments, facet joint capsular ligaments, alar ligaments, transverse ligaments, and anterior and posterior atlanto-occipital membranes were modeled as nonlinear bar elements or as tension-only membrane elements. A previously developed head and brain model was also incorporated.
Technical Paper

A Severe Ankle and Foot Injury in Frontal Crashes and Its Mechanism

1998-11-02
983145
In a frontal automotive crash, the driver's foot is usually stepping on the brake pedal as an instinctive response to avoid a collision. The tensile force generated in the Achilles tendon produces a compressive preload on the tibia. If there is intrusion of the toe board after the crash, an additional external force is applied to the driver's foot. A series of dynamic impact tests using human cadaveric specimens was conducted to investigate the combined effect of muscle preloading and external force. A constant tendon force was applied to the calcaneus while an external impact force was applied to the forefoot by a rigid pendulum. Preloading the tibia significantly increased the tibial axial force and the combination of these forces resulted in five tibial pylon fractures out of sixteen specimens.
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

Medical and Technical Outcomes of HANS® Use in CART

2002-12-02
2002-01-3350
From past experience, crash accelerations in CART Champ Cars during 2000 and 2001 would have caused head injuries at a 15% occurrence rate and neck injuries at a 7.5% occurrence. In 28 incidents in 2000 and 2001 involving 33 drivers, there were no cervical fractures or dislocations, one significant, but minor head injury and 8 instances of minor neck complaint, all of which resolved spontaneously within three weeks. One driver lost racing time. This on-track experience supports the laboratory data previously published and demonstrates the efficacy of the HANS® * device in substantially reducing the risk of head and neck injury in motorsports. (*HANS® is a registered trademark and an acronym for Head and Neck Support.)
Technical Paper

Sled Test Evaluation of Racecar Head/Neck Restraints

2002-12-02
2002-01-3304
Recent action by some racecar sanctioning bodies making head/neck restraint use mandatory for competitors has resulted in a number of methods attempting to provide head/neck restraint. This paper evaluates the performance of a number of commercially available head/neck restraint systems using a stock car seating configuration and a realistic stock car crash pulse. The tests were conducted at an impact angle of 30 degrees to the right, with a midsize male Hybrid III anthropomorphic test device (ATD) modified for racecar crash testing. A six-point latch and link racing harness restrained the ATD. The goal of the tests was to examine the performance of the head/neck restraint without the influence of the seat or steering wheel. Three head/neck restraint systems were tested using a sled pulse with a 35 mph (56 km/h) velocity change and 50G peak deceleration. Three tests with three samples of each system were performed to assess repeatability.
Technical Paper

A Study of Driver Injury Mechanism in High Speed Lateral Impacts of Stock Car Auto Racing Using a Human Body FE Model

2011-04-12
2011-01-1104
This paper analyzed the mechanisms of injury in high speed, right-lateral impacts of stock car auto racing, and interaction of the occupant and the seat system for the purpose of reducing the risk of injury, primarily rib fractures. Many safety improvements have been made to stock car racing recently, including the Head and Neck Support devices (HANS®), the 6-point restraint harnesses, and the implementation of the SAFER Barrier. These improvements have contributed greatly to mitigating injury during the race crash event. However, there is still potential to improve the seat structure and the understanding of the interaction between the driver and the seat in the continuation of making racing safety improvements. This is particularly true in the case of right-lateral impacts where the primary interaction is between the seat supports and the driver and where the chest is the primary region of injury.
Technical Paper

Aortic Mechanics in High-Speed Racing Crashes

2012-04-16
2012-01-0101
Auto racing has been in vogue from the time automobiles were first built. With the dawn of modern cars came higher engine capacities; the speeds involved in these races and crashes increased as well. However, the advent of passive restraint systems such as the helmet, HANS (Head and Neck Support device), multi-point harness system, roll cage, side and frontal crush zones, racing seats, fire retardant suits, and soft-wall technology, have greatly improved the survivability of the drivers in high-speed racing crashes. Three left lateral crashes from Begeman and Melvin (2002), Case #LAS12, #IND14 and #99TX were used as inputs to the Wayne State Human Body Model (WSHBM) in a simulated racing buck. Twelve simulations with delta-v, six-point harness and shoulder pad as design variables were analyzed for the average maximum principal strain (AMPS) in the aorta. The average AMPS for the high-speed crashes were 0.1551±0.0172 while the average maximum pressure was 110.50±4.25 kPa.
Technical Paper

Forensic Determination of Seat Belt Usage in Automotive Collisions: Development of a Diagnostic Tool

2006-04-03
2006-01-1128
The primary purpose of this research was to generate a “linked set” of data between collision severity, occupant weight and collision-induced seat belt markings to assist in reconstruction of motor vehicle accidents. The secondary purpose was to establish a preliminary threshold of belt load to produce known collision-induced seat belt markings. Sled tests were performed utilizing Hybrid III 5th and 50th percentile crash test dummies. Sled accelerations ranged from 10.0 g to 23.6 g and Delta-V’s from 6.4 m/s to 11.3 m/s. Post-test inspections and photographs taken of the seat belts documented collision-induced markings on components such as the D-Ring, latch plate, webbing and stitching. Belt loads were analyzed to establish preliminary thresholds for the production of observable markings.
Technical Paper

Proposed Provisional Reference Values for the Humerus for Evaluation of Injury Potential

1996-11-01
962416
A humerus provisional reference value (PRV) based on human surrogate data was developed to help evaluate upper arm injury potential. The proposed PRV is based on humerus bone bending moments generated by testing pairs of cadaver arms to fracture in three-point bending on an Instron testing machine in either lateral-medial (L-M) or anterior-posterior (A-P) loading, at 218 mm/s and 0.635 mm/s loading rates. The results were then normalized and scaled to 50th and 5th percentile sized occupants. The normalized average L-M bending moment at failure test result was 6 percent more than the normalized average A-P bending moment. The normalized average L-M shear force at failure was 23 percent higher than the normalized average A-P shear force. The faster rate of loading resulted in a higher average bending moment overall - 8 percent in the L-M and 14 percent in the A-P loading directions.
Technical Paper

Sled Test Evaluation of Racecar Head/Neck Restraints Revisited

2004-11-30
2004-01-3516
At the 2002 MSEC, we presented a paper on the sled test evaluation of racecar head/neck restraint performance (Melvin, et al. 2002). Some individuals objected to the 3 msec clip filtering procedures used to eliminate artifactual spikes in the neck tension data for the HANS® device. As a result, we are presenting the same test data with the spikes left in the neck force data to reassure those individuals that these spikes did not significantly affect the results and conclusions of our original paper. In addition we will add new insights into understanding head/neck restraint performance gained during two more years of testing such systems. This paper re-evaluates the performance of three commercially available head/neck restraint systems using a stock car seating configuration and a realistic stock car crash pulse. The tests were conducted at an impact angle of 30 degrees to the right, with a midsize male Hybrid III anthropomorphic test device (ATD) modified for racecar crash testing.
Technical Paper

The Effect of Variable Load Energy Absorbers on the Biodynamic Response of Cadavers

1975-02-01
751168
Several types of energy absorbers were tested on a sled simulating a crash deceleration using instrumented, seated erect dummies and cadavers. The energy absorbers were mechanical load limiting devices which attenuated the impact by yielding or tearing of metal. Their principal effects were to reduce the peak deceleration sustained by the occupant with the expected reduction in restraint forces. Constant load level energy absorbers were found to be unattractive because they can easily “bottom out” causing forces and body strains which could be much higher than those without absorbers. Head accelerations were significantly reduced by the energy absorbers as well as some body strain. However, spinal strains in the cadaver were not significantly reduced. They appear to be not only a function of the peak deceleration level but also of the duration of the pulse.
Technical Paper

Definition and Development of A Crash Dummy Head

1974-02-01
741193
Crash test dummies serve as human surrogates in automotive crash simulations, and accelerations monitored in the heads of these dummies are used for assessment of human head injury hazard. For these acceleration measurements to be meaningful indicators of head injury, the impact response of the human head must be a part of dummy head design. This paper describes the conception, design, and development of a crash test dummy head. Geometric, inertial, and performance requirements based on biomechanical information are presented and discussed. The head design concept is compatible with current head injury assessment procedures, and the configuration is based on the GM Research skull and head geometry models. The manufacture and development are described, and the test procedures and results are presented and discussed with reference to the biomechanical and functional requirements. The resulting dummy head is shown to comply with these requirements.
Technical Paper

The Highway Safety Research Institute Dummy Compared with General Motors Biofidelity Recommendations and the Hybrid II Dummy

1974-02-01
740588
Two Highway Safety Research Institute (HSRI) dummies were tested and evaluated. Based on the analysis given, the HSI dummy should not be used for vehicle qualification testing. However, many of its components offer viable alternatives for future dummy development. The dummy was found to have inadequate biomechanical fidelity in the head, neck, and chest, although its characteristics were very promising and, as a whole, biomechanically superior to the Hybrid II. Its repeatability and reproducibility in dynamic component tests were better than the Hybrid II dummy. In particular, the HSRI friction joints were outstanding in repeatability and had a significant advantage in usability in that they do not require resetting between tests. In three-point harness and ACRS systems tests, the values of injury criteria produced by the HSRI dummy were generally lower than those obtained with the Hybrid II, especially the femur loads in the ACRS tests.
Technical Paper

Belt Slip Measurements on Human Volunteers and the Part 572 Dummy in Low -Gx Impact Acceleration

1983-10-17
831635
A series of volunteer and dummy impact experiments was performed on a Hyge-type (accelerator) sled to study the relative motion between the upper torso restraint and the torso surface. Kinematic measurements were made using a three-dimensional photogrammetric analysis of high-speed film data. Belt slip was found to be in the range of approximately 10 to 30 mm with more slip experienced by volunteers than the dummy. The dummy showed a slight change in amount of slip with acceleration level and all slip takes place within the first 80 ms of belt loading.
Technical Paper

Geometric, Inertial, and Joint Characteristics of Two Part 572 Dummies for Occupant Modeling

1977-02-01
770937
The geometric, inertial, and joint characteristics of two Part 572 crash test dummies were measured to provide input to the MVMA 2-D occupant model. Segments of the dummies were defined which correspond to the links of the model and coordinate axes were defined for each segment. The center of gravity of each segment was located and its coordinates were measured along with the locations of joint centers, instrument mounts, and other significant geometric features. The mass moment of inertia for each segment about a lateral axis through its center of gravity was measured. The geometric and inertial measurements are presented on summary sheets for each segment with the hardware definition, coordinate system, and special notes for that particular segment. These summary sheets present the data in a format that is readily usable for defining computer model input.
X