Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Soot Oxidation in Periphery of Diesel Spray Flame via High-Speed Sampling and HR-TEM Observation

2017-09-04
2017-24-0067
In order to better understand in-flame diesel soot oxidation processes, soot particles at the oxidation-dominant periphery of diesel spray flame were sampled by a newly developed “suck” type soot sampler employing a high-speed solenoid valve and their morphology and nanostructure were observed via high-resolution transmission electron microscopy (HR-TEM). A single-shot diesel spray flame for the soot sampling experiment was achieved in a constant-volume vessel under a diesel-like condition. The sampler instantaneously sucks out a small portion of soot laden gases from the flame. A TEM grid holds inside the flow passage close to its entrance is immediately exposed to the gas flow induced by the suction at the upstream of the solenoid valve, so that the quick thermophoretic soot deposition onto the grid surface can effectively freeze morphology variation of soot particles during the sampling processes.
Journal Article

The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine

2008-04-14
2008-01-1363
In-cylinder flow and combustion processes simulated with the standard k-ε turbulence model and with an alternative model-employing a non-linear, quadratic equation for the turbulent stresses-are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NOx emissions.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Journal Article

Comparison of Quantitative In-Cylinder Equivalence Ratio Measurements with CFD Predictions for a Light Duty Low Temperature Combustion Diesel Engine

2012-04-16
2012-01-0143
In a recent experimental study the in-cylinder spatial distribution of mixture equivalence ratio was quantified under non-combusting conditions by planar laser-induced fluorescence (PLIF) of a fuel tracer (toluene). The measurements were made in a single-cylinder, direct-injection, light-duty diesel engine at conditions matched to an early-injection low-temperature combustion mode. A fuel amount corresponding to a low load (3.0 bar indicated mean effective pressure) operating condition was introduced with a single injection at -23.6° ATDC. The data were acquired during the mixture preparation period from near the start of injection (-22.5° ATDC) until the crank angle where the start of high-temperature heat release normally occurs (-5° ATDC). In the present study the measured in-cylinder images are compared with a fully resolved three-dimensional CFD model, namely KIVA3V-RANS simulations.
Journal Article

Investigation of Fuel Reactivity Stratification for Controlling PCI Heat-Release Rates Using High-Speed Chemiluminescence Imaging and Fuel Tracer Fluorescence

2012-04-16
2012-01-0375
Premixed charge compression ignition (PCI) strategies offer the potential for simultaneously low NOx and soot emissions with diesel-like efficiency. However, these strategies are generally confined to low loads due to inadequate control of combustion phasing and heat-release rate. One PCI strategy, dual-fuel reactivity-controlled compression ignition (RCCI), has been developed to control combustion phasing and rate of heat release. The RCCI concept uses in-cylinder blending of two fuels with different auto-ignition characteristics to achieve controlled high-efficiency clean combustion. This study explores fuel reactivity stratification as a method to control the rate of heat release for PCI combustion. To introduce fuel reactivity stratification, the research engine is equipped with two fuel systems. A low-pressure (100 bar) gasoline direct injector (GDI) delivers iso-octane, and a higher-pressure (600 bar) common-rail diesel direct-injector delivers n-heptane.
Technical Paper

3-D Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1991-09-01
911789
Manufacturers of heavy-duty diesel engines are facing increasingly stringent, emission standards. These standards have motivated new research efforts towards improving the performance of diesel engines. The objective of the present program is to develop a comprehensive analytical model of the diesel combustion process that can be used to explore the influence of design changes. This will enable industry to predict the effect of these changes on engine performance and emissions. A major benefit of the successful implementation of such models is that engine development time and costs would be reduced through their use. The computer model is based on the three-dimensional KIVA-II code, with state-of-the-art submodels for spray atomization, drop breakup / coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, and soot and radiation.
Journal Article

Modeling the Ignitability of a Pilot Injection for a Diesel Primary Reference Fuel: Impact of Injection Pressure, Ambient Temperature and Injected Mass

2014-04-01
2014-01-1258
In this paper, we studied the accuracy of computational modeling of the ignition of a pilot injectionin the Sandia National Laboratories (SNL) light-duty optical engine facility, using the physical properties of a cetane/iso-cetane Diesel Primary Reference Fuel (DPRF) mixture and the reaction kinetics of a well-validated mechanism for primary reference fuels. Local fuel-air equivalence ratio measurements from fuel tracer based planar laser-induced fluorescence (PLIF) experiments were used to compare the mixture formation predictions with KIVA-ERC-based simulations. The effects of variations in injection mass from 1 mg to 4 mg, in-cylinder swirl ratio, and near-TDC temperatures on non-combusting mixture preparation were analyzed, to assess the accuracy of the model in capturing average jet behavior, despite its inability to model the non-negligible jet-by-jet variations seen in the experiments.
Technical Paper

Comparison of Computed Spray in a Direct-Injection Spark-Ignited Engine with Planar Images

1997-10-01
972883
Fuel spray atomization and breakup processes within a direct-injection spark-ignition (DISI) engine and outside the engine were modeled using a modified KIVA-3V code with improved spray models. The structures of the predicted sprays were qualitatively compared with planar images. The considered sprays were created by a prototype pressure-swirl injector and the planar images were obtained by laser sheet imaging in an optical DISI engine. In the out-of-engine case, the spray was injected into atmospheric air, and was modeled in a two dimensional bomb. In the engine case, the injection started from 270° ATDC, and full 3-D computations in the same engine were performed. In both cases, two liquid injection pressure conditions were applied, that is, 3.40 MPa and 6.12 MPa. The model gives good prediction of the tip penetration, and external spray shape, but the internal structure prediction has relatively lower accuracy, especially near the spray axis.
Technical Paper

Physical Properties of Bio-Diesel and Implications for Use of Bio-Diesel in Diesel Engines

2007-10-29
2007-01-4030
In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both conventional diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study.
Technical Paper

Experimental Assessment of Reynolds-Averaged Dissipation Modeling in Engine Flows

2007-09-16
2007-24-0046
The influence of the constant C3, which multiplies the mean flow divergence term in the model equation for the turbulent kinetic energy dissipation, is examined in a motored diesel engine for three different swirl ratios and three different spatial locations. Predicted temporal histories of turbulence energy and its dissipation are compared with experimentally-derived estimates. A “best-fit” value of C3 = 1.75, with an approximate uncertainty of ±0.3 is found to minimize the error between the model predictions and the experiments. Using this best-fit value, model length scale behavior corresponds well with that of measured velocity-correlation integral scales during compression. During expansion, the model scale grows too rapidly. Restriction of the model assessment to the expansion stroke suggests that C3 = 0.9 is more appropriate during this period.
Technical Paper

Two-Color Imaging of In-Cylinder Soot Concentration and Temperature in a Heavy-Duty DI Diesel Engine with Comparison to Multidimensional Modeling for Single and Split Injections

1998-02-23
980524
Two-Color imaging optics were developed and used to observe soot emission processes in a modern heavy-duty diesel engine. The engine was equipped with a common rail, electronically-controlled, high-pressure fuel injection system that is capable of up to four injection pulses per engine cycle. The engine was instrumented with an endoscope system for optical access for the combustion visualization. Multidimensional combustion and soot modeling results were used for comparisons to enhance the understanding and interpretation of the experimental data. Good agreement between computed and measured cylinder pressures, heat release and soot and NOx emissions was achieved. In addition, good qualitative agreement was found between in-cylinder soot concentration (KL) and temperature fields obtained from the endoscope images and those obtained from the multidimensional modeling.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

Study of Diesel Engine Size-Scaling Relationships Based on Turbulence and Chemistry Scales

2008-04-14
2008-01-0955
Engine design is a time consuming process in which many costly experimental tests are usually conducted. With increasing prediction ability of engine simulation tools, engine design aided by CFD software is being given more attention by both industry and academia. It is also of much interest to be able to use design information gained from an existing engine design of one size in the design of engines of other sizes to reduce design time and costs. Therefore it is important to study size-scaling relationships for engines over wide range of operating conditions. This paper presents CFD studies conducted for two production diesel engines - a light-duty GM-Fiat engine (0.5L displacement) and a heavy-duty Caterpillar engine (2.5L displacement). Previously developed scaling arguments, including an equal spray penetration scaling model and an extended, equal flame lift-off length scaling model were employed to explore the parametric scaling connections between the two engines.
Technical Paper

Influence of Spray-Wall Interaction and Fuel Films on Cold Starting in Direct Injection Diesel Engines

1998-10-19
982584
Various single and split injection schemes are studied to provide a better understanding of fuel distribution during cold starting in DI diesel engines. Improved spray-wall interaction, fuel film and multicomponent vaporization models are used to analyze the combustion processes. Better combustion characteristics are obtained for the split injection schemes than with a single injection. An analysis of the fuel impingement processes identifies the mechanisms involved in producing the differences in vaporization and combustion of the fuel. A greater amount of splashing occurred for the split injections compared to a single injection. This behavior is attributed to the decreased film thickness (less dissipation of impingement energy), the decreased impingement area (obtained by increasing the impingement Weber number), and most importantly, the reduced frequency of drop impingement.
Technical Paper

Efficient Multidimensional Simulation of HCCI and DI Engine Combustion with Detailed Chemistry

2009-04-20
2009-01-0701
This paper presents three approaches that can be used for efficient multidimensional simulations of HCCI and DI engine combustion. The first approach uses a newly developed Adaptive Multi-grid Chemistry (AMC) model. The AMC model allows a fine mesh to be used to provide adequate resolution for the spray simulation, while dramatically reducing the number of cells that need to be computed by the chemistry solver. The model has been implemented into the KIVA3v2-CHEMKIN code and it was found that computer time was reduced by a factor of ten for HCCI cases and a factor of three to four for DI cases without losing prediction accuracy. The simulation results were compared with experimental data obtained from a Honda engine operated with n-heptane under HCCI conditions for which directly measured in-cylinder temperature and H2O mole fraction data are available.
Technical Paper

Optimization of Injection Rate Shape Using Active Control of Fuel Injection

2004-03-08
2004-01-0530
The effect of injection rate shape on spray evolution and emission characteristics is investigated and a methodology for active control of fuel injection is proposed. Extensive validation of advanced vaporization and primary jet breakup models was performed with experimental data before studying the effects of systematic changes of injection rate shape. Excellent agreement with the experiments was obtained for liquid and vapor penetration lengths, over a broad range of gas densities and temperatures. Also the predicted flame lift-off lengths of reacting diesel fuel sprays were in good agreement with the experiments. After the validation of the models, well-defined rate shapes were used to study the effect of injection rate shape on liquid and vapor penetration, flame lift-off lengths and emission characteristics.
Technical Paper

The Influence of Swirl Ratio on Turbulent Flow Structure in a Motored HSDI Diesel Engine - A Combined Experimental and Numerical Study

2004-03-08
2004-01-1678
Simultaneous two-component measurements of gas velocity and multi-dimensional numerical simulation are employed to characterize the evolution of the in-cylinder turbulent flow structure in a re-entrant bowl-in-piston engine under motored operation. The evolution of the mean flow field, turbulence energy, turbulent length scales, and the various terms contributing to the production of the turbulence energy are correlated and compared, with the objectives of clarifying the physical mechanisms and flow structures that dominate the turbulence production and of identifying the source of discrepancies between the measured and simulated turbulence fields. Additionally, the applicability of the linear turbulent stress modeling hypothesis employed in the k-ε model is assessed using the experimental mean flow gradients, turbulence energy, and length scales.
Technical Paper

The Evolution of Flow Structures and Turbulence in a Fired HSDI Diesel Engine

2001-09-24
2001-01-3501
In-cylinder fluid velocity is measured in an optically accessible, fired HSDI engine at idle. The velocity field is also calculated, including the full induction stroke, using multi-dimensional fluid dynamics and combustion simulation models. A detailed comparison between the measured and calculated velocities is performed to validate the computed results and to gain a physical understanding of the flow evolution. Motored measurements are also presented, to clarify the effects of the fuel injection process and combustion on the velocity field evolution. The calculated mean in-cylinder angular momentum (swirl ratio) and mean flow structures prior to injection agree well with the measurements. Modification of the mean flow by fuel injection and combustion is also well captured.
Technical Paper

Numerical Analysis of High-Pressure Fast-Response Common Rail Injector Dynamics

2002-03-04
2002-01-0213
Managing the injection rate profile is a powerful tool to control engine performance and emission levels. In particular, Common Rail (C.R.) injection systems allow an almost completely flexible fuel injection event in DI-diesel engines by permitting a free mapping of the start of injection, injection pressure, rate of injection and, in the near future, multiple injections. This research deals with the development of a network-based numerical tool for understanding operating condition limits of the Common Rail injector. The models simulate the electro-fluid-mechanical behavior of the injector accounting for cavitation in the nozzle holes. Validation against experiments has been performed. The model has been used to provide insight into the operating conditions of the injector and in order to highlight the application to injection system design.
X